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0 Introduction

This document is intended to guide basic knowledge of quantum computer and quantum

algorithm for pioneering electronic structure theory calculations using quantum computers,

especially Quantum Phase Estimation(QPE) and Variational Quantum Eigensolver(VQE).

This document covers terminologies and notations of quantum computer, scheme of electronic

structure theory, and some quantum algorithm examples for quantum chemistry.

Since this document is aimed for graduate school newcomer, it requires basic concepts of quantum

chemistry and linear algebra.

For any question or suggestion, please contact: Youngkyun Ahn (fib89@kaist.ac.kr), Sowon Kim

(sowonkim@kaist.ac.kr), Seungheon Choi (huni1123@kaist.ac.kr), and Hongseok Choi

(hongseok2204@kaist.ac.kr).

Contents

0 Introduction 1

1 Essential Electronic Structure Theory 3

1.1 Hartree-Fork(HF) approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The electronic problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Hartree-Fock equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Fock operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 The Hartree-Fock process (SCF method) . . . . . . . . . . . . . . . . . . . 4

1.1.5 Hartree-Fock limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.6 Interpretation of solutions to the Hartree-Fock equation . . . . . . . . . . . 5

1.2 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Creation and Annihilation operators . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Hamiltonian represented by second quantization . . . . . . . . . . . . . . . 9

1.3 Configuration Interaction (CI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Coupled Cluster(CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Unitary Coupled Cluster (UCC) . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Basics of Quantum Computer 12

2.1 Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Multiple Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Gate & Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Pauli Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



2.2.2 Circuit Representation and Gates . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Fermionic space to qubit space transformation . . . . . . . . . . . . . . . . . . . . 18

2.4.1 The wave function in qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 The Jordan-Wigner encoding method . . . . . . . . . . . . . . . . . . . . . 18

2.5 Common Facts about Quantum Computer . . . . . . . . . . . . . . . . . . . . . . . 19

3 Quantum Phase Estimation(QPE) 20

3.1 Quantum Fourier Transformation(QFT) . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Quantum Phase Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Circuit and Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Improving QPE with iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Variational Quantum Eignensolver(VQE) 27

4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 UCC Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 ⟨Z⟩ Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Homebuilt VQE manual 33

5.1 Instruction Colab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Instruction Local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2



1 Essential Electronic Structure Theory

In this chapter we will summarize a part of the electronic structure theory that is necessary to

understand the following chapters. We’re only going to cover the basic concepts here. If you want

more details, we recommend reading the book in the reference. [1]

1.1 Hartree-Fork(HF) approximation

Finding and describing an approximate solution to the electronic Schrödinger equation is the

main issue of electronic structure theory. In this section we will introduce the HF approximation

method, which is the starting point for solving the electronic Schrödinger equation for many-

electron problems. The HF method uses a mean-field approximation that use average field of the

electron correlations, so it does not yield an exact wave function. However, the HF method is used

to approximate electronic states, which are then used as the basis for other computational methods

(e.g. MP2, CCSD, CI, etc.).

1.1.1 The electronic problem

The solution to a Schrodinger equation involving the electronic hamiltonian (Eq. 1.24),

HelecΦelec = EelecΦelec (1.1)

is the electronic wave function,

Φelec = Φelec({ri}; {RA}) (1.2)

where ri and RA is electrons and nuclei described by position vectors.

The total energy for fixed nuclei include the constant nuclear repulsion.

Etot = Eelec +
M∑

A=1

M∑
B>A

ZAZB

RAB
(1.3)

Solving the equations (1.1) to (1.3) constitute the electronic problem. Note that the Hamiltonian

we are mainly focused on is the electronic Hamiltonian. (H = Helec). By solving for these problem,

we get the wave function and energy. The wave function, which is the eigenvector of equation (1.1),

allows us to obtain about the electronic properties of molecules as well as their energy.

1.1.2 Hartree-Fock equation

The Hartree-Fock approximation method considers the many-electron problem as a one-electon

problem and the electron-electron interaction term as the average potential. So in this method, we

express the hamiltonian for a many-body electron as a sum of effective one-electron hamiltonians.

HHF =

N∑
i=1

f(i) (1.4)

The effective one-electron operator we use for this is called the Fock operator. The eigenvector

of the Fock operator is the spin orbital, and the eigenvalue is the energy of the each spin orbital.

f(i)χ(xi) = εχ(xi) (1.5)
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where f(i) is Fock operator, χ(xi) is spin orbital for ith electron xi, and ε is eigenvalue of the

operator. We call the equation (1.5) as the Hartree-Fock equation.

1.1.3 Fock operator

The Fock operator has the following form

f(i) = −1

2
∇2

i −
M∑

A=1

ZA

riA
+ vHF (i) (1.6)

where vHF (i) is the average potential experienced by the ith electron due to the other electrons.

This potential vHF (i) is composed of coulomb(J ) and exchange(K) potential.

vHF (1) =
∑
b

Jb(1)−Kb(1) (1.7)

The coulomb potential is caused by the interaction between one electron and another, and can

be interpreted as a probability density of the other electrons that affect it. It is a local potential

with a different electron in each orbital.

Jb(1)χa(1) =

∫
dx2|χb(2)|2r−1

12 χa(1) (1.8)

The exchange potential, on the other hand, is due to the anti-symmetry of electrons. This

potential represents the energy change due to the exchange of electrons and calculates the effect of

different orbitals on a single electron, rather than the effect of having one electron in one orbital.

In other words, they are non local operators that affect each other.

Kb(1)χa(1) =

∫
dx2χb(2)

∗r−1
12 χa(2)χa(1) (1.9)

1.1.4 The Hartree-Fock process (SCF method)

The Hartree-Fock equation approximates the effect of other electrons as a field in order to find a

solution, which means that the resulting solution is nonlinear and must be calculated by iteration.

The method of solving the Hartree-Fock equation by calculating the field and updating it by

iteration is called the Self-Consistent Field (SCF) method. The SCF method is a method

that iterates the specific calculations with field until the self-consistency condition is satisfied. In

the HF method, the self-consistency condition is that the field vHF (i) no longer change and the

spin orbitals are the same as the Fock operator eigenfunctions.

Here is a simple scheme of the SCF process.

1. Make an initial guess at the spin orbitals χ(xi)

2. Calculate the average field vHF (i) that affects each electron xi

3. Solve the eigenvalue equation (1.5) to get a new set of spin orbitals χ′(xi).

4. Using the new spin orbitals, obtain new average field vHF ′(i)

5. Iterate 2 - 4 until self-consistency is reached

In step 3, the new set of spin orbitals χ′(xi) can be obtained from the eigenvectors of the Fock

operator f(i). And in step 5, if the field vHF (i) is no longer changing and the spin orbitals are the

same as the eigenfunctions of the Fock operator, the self-consistency condition is satisfied.

4



1.1.5 Hartree-Fock limit

If the initial iuput has a large number of basis sets, it has more flexibility to find a wave function

with lower energy. As we increase the number of basis sets, the energy continues to decrease until

it reaches a certain limit, which we call the limit as Hartree-Fock limit. The wave function at

the Hartree-Fock limit is the most accurate wave function that can be obtained by the HF method.

Summary of Hartree-Fock approximation

Purpose : the molecular orbital approximation to solve the electronic problem

Input & output : basis set → orthogonal set of molecular orbitals

Process : replace the multi-electron Hamiltonian with a sum of one-electron opera-

tors(Fock operators) → use the variational method to find the wave function with the

minimum energy for a given set of orbitals → calculates the correlation between electrons

as an average field → solves a nonlinear problem by iteration. (SCF process)

Result : wave function with a single Slater-determinant

This wave function is the best single-Slater determinant approximation that can

be made with a given basis set.

1.1.6 Interpretation of solutions to the Hartree-Fock equation

The HF solutions be used as a starting point for other advanced approximation methods.

When the wave function is represented by the K spatial orbitals, the number of spin orbitals(generated

for each α spin and β spin) is 2K. For N electrons, the eigenvectors corresponding to the energies

from the lowest to the N th are called occupied spin orbitals, and the remaining 2K-N orbitals

are called virtual spin orbitals.

The Slater determinant of these orbitals forms the Hartree-Fock ground state.

|Ψ0⟩ = |χ1χ2 · · ·χaχb · · ·χN ⟩ (1.10)

The lowest energy state is represented by the ground state (1.10), but there are
(
2K
N

)
−1 other states.

The other states represent other possible determinant from the HF ground state, i.e. they can be

described as excited states from the occupied orbitals in the ground state to the unoccupied

orbitals in the virtual state.

The singly excited determinant excited from the occupied orbital, χa, to the virtual orbital,

χr, can be represented as follows.

|Ψr
a⟩ = |χ1χ2 · · ·χrχb · · ·χN ⟩ (1.11)

Also, the doubly excited determinant exciteed from the occupied orbitals χa, χb to the virtual

orbitals χr, χs is represented as follows.

|Ψrs
ab⟩ = |χ1χ2 · · ·χrχs · · ·χN ⟩ (1.12)

All
(
2K
N

)
determinants can thus be classified as either the HF ground state or single, doubly,

triply,..., N-tuply excited states. They are important as N-electron basis functions for an expansion

of the exact N-electron states of the system. We’ll use this excited determinant expression in the

next chapter.

We want a more accurate representation of the electronic wave function. The electron correlation
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(Ecorr), which cannot be calculated by the Hartree-Fock method, is expressed as follows

Ecorr = E0 − E0 (1.13)

( E0 : energy of the system, E0 : Hartree-Fock limit energy)

In the 1.3 and 1.4, we will introduce more accurate ways of representing wave functions: the

Configuration Interaction (CI) and Coupled Cluster (CC) methods. With these methods,

our goal is to find a lower energy by calculating Ecorr.

The Hartree-Fock method allowed us to represent not only the ground state, but also singly, doubly,

and other excitations. The wave function predicted by the HF method is the ground single-Slater

determinant, which alone does not give an accurate wave function, but by using the other excitation

determinants of the HF method to express the wave function, a more accurate wave function can

be obtained.

1.2 Second Quantization

We have learn that the ‘Slater determinant’ allows us to express the antisymmetry property of the

electron wavefunction. The second quantization representation, on the other hand, allows us

to express the antisymmetry property as an ‘operator’. This representation gives the wavefunction

algebraic properties that facilitate a variety of calculations. It can be particularly useful in the multi-

electron problem because it allows us to conveniently manipulate the state of the electrons.[1][2]

1.2.1 Creation and Annihilation operators

In the second quantization, we define creation operator(a†) and annihilation operator(a) to

represent the wave function as an operator.

For an arbitrary Slater determinant |χiχk · · ·χl⟩, a†i and ai act as follows

a†i |χk · · ·χl⟩ = |χiχk · · ·χl⟩

ai|χiχk · · ·χl⟩ = |χk · · ·χl⟩
(1.14)

In the above expression, a†i acts to create electrons in the spin orbital χi of the wave function

|χiχk · · ·χl⟩, and ai acts to annihilate electrons in the spin orbital χi.

Note the order of a†i and ai : Each operator is applied to the slater determinant in turn, so that

the sign of the result is reversed when different operators are applied.

a†ia
†
j |χk · · ·χl⟩ = a†i |χjχk · · ·χl⟩ = |χiχjχk · · ·χl⟩

a†ja
†
i |χk · · ·χl⟩ = a†j |χiχk · · ·χl⟩ = |χjχiχk · · ·χl⟩ = −|χiχjχk · · ·χl⟩

a†ia
†
j + a†ja

†
i = 0 = {a†i , a

†
j}

(1.15)

If the same operators are applied, the wavefunction collapses. For example, if the same creation

operators are applied to a wave function, the slater determinant will have two identical columns,

resulting in a zero value.

a†ia
†
i |χk · · ·χl⟩ = a†i |χiχk · · ·χl⟩ = |χiχiχk · · ·χl⟩ = 0 (1.16)
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Also, if the same annihilation operators are applied to a wave function, the wave function will be

zero because it is impossible to destroy unoccupied orbital.

aiai|χiχk · · ·χl⟩ = ai|χk · · ·χl⟩ = |χk · · ·χl⟩ = 0 (1.17)

a†i and aj satisfy the anti-commutation relation with each other.

aia
†
j + a†jai = δij = {ai, a†j} (1.18)
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proof) Anti-commutation relation

1. Consider the operator aia
†
i +a

†
iai acting on an arbitrary determinant |χk · · ·χl⟩. If spin

orbital χi is not occupied in this determinant,

(aia
†
i + a†iai)|χj · · ·χl⟩ = aia

†
i |χk · · ·χl⟩ = ai|χiχk · · ·χl⟩ = |χk · · ·χl⟩ (1.19)

on the other hand, if χi is occupied,

(aia
†
i + a†iai)|χj · · ·χi · · ·χl⟩ = a†iai|χk · · ·χi · · ·χl⟩

= −a†iai|χk · · ·χi · · ·χl⟩ = −a†i | · · ·χk · · ·χl⟩ = |χk · · ·χi · · ·χl⟩
(1.20)

Thus, aia
†
i + a†iai = 1 = {ai, a†i}

2. Consider the operator aia
†
j+a

†
jai (i ̸= j) acting on an arbitrary determinant |χk · · ·χl⟩.

If χi /∈ {k, . . . , l} or χj ∈ {k, . . . , l}, each term can be zero because electrons in unoccupied

orbitals cannot be destroyed and electrons in occupied orbitals cannot be created.

If χi ∈ {k, . . . , l} and χj /∈ {k, . . . , l}, the sum of the terms can be zero because of the

anti-symmetry property of determinant.

(aia
†
j + a†jai)|χk · · ·χi · · ·χl⟩ = −(aia

†
j + a†jai)|χi · · ·χk · · ·χl⟩

= −ai|χjχi · · ·χk · · ·χl⟩ − a†j | · · ·χk · · ·χl⟩

= ai|χiχj · · ·χk · · ·χl⟩ − |χj · · ·χk · · ·χl⟩

= |χj · · ·χk · · ·χl⟩ − |χj · · ·χk · · ·χl⟩ = 0

(1.21)

Thus, aia
†
j + a†jai = 0 = {ai, a†i} (if i ̸= j)

Lastly, we define a vacuum state | ⟩ to fully express the properties of the Slater determinant

in the creation and annihilation operators. The vacuum state is a state with no electrons, so an

arbitrary wave function can be expressed from this state.

ai| ⟩ = 0 = ⟨ |a†i
|χi⟩ = a†i | ⟩

a†ia
†
k · · · a

†
l | ⟩ = |χiχk · · ·χl⟩

(1.22)

It also satisfies the normalized condition like a wave function.

⟨ | ⟩ = 1 (1.23)

Example 3.1.1) (Szabo P.90)

Show, using the properties of determinants, that

(a†1a
†
2 + a†2a

†
1)|K⟩ = 0

for every |K⟩ in the set |χ1χ2⟩, |χ1χ3⟩, |χ1χ4⟩, |χ2χ3⟩, |χ2χ4⟩, |χ3χ4⟩

8



Summary) Properties of creation & annihilation operators

1. a†i |χk · · ·χl⟩ = |χiχk · · ·χl⟩ , ai|χiχk · · ·χl⟩ = |χk · · ·χl⟩
2. ai| ⟩ = 0 = ⟨ |a†i
3. a†ia

†
j + a†ja

†
i = 0 = {a†i , a

†
j} , aiaj + ajai = 0 = {ai, aj}

4. aia
†
j + a†jai = δij = {ai, a†j}

1.2.2 Hamiltonian represented by second quantization

With the Born-Oppenheimer approximation, we represent the electronic Hamiltonian as

Helec =

N∑
i=1

1

2
∇2

i −
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
(1.24)

This is the Hamiltonian describing the motion of N electrons in a field of M point charges, where ZA

is the atomic number of the nucleus A and r is the distance between two electrons. The first term

is the operator for the kinetic energy of the electrons; the second term is the coulomb attraction

between electrons and nuclei; the third term represent the repulsion between electrons.

We can express this as a second quantization representation as

Helec =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrsa
†
pa

†
qaras (1.25)

where hpq is a one-electron integral and hpqrs is a two-electron integral.

hpq =

∫
ϕ∗p(r)

(
−1

2
∇2 −

∑
I

ZI

RI − r
ϕq(r)

)

hpqrs =

∫
ϕ∗p(r1)ϕ

∗
q(r2)ϕr(r2)ϕs(r1)

|r1 − r2|

(1.26)

1.3 Configuration Interaction (CI)

The linear combination of all possible determinants that can be obtained from the Hartree-Fock

slater determinant makes the N-electron determinant set complete, allowing for an exact represen-

tation of any N-electron wave function.

|Φ⟩ = c0|Ψ0⟩+
∑
ra

cra|Ψr
a⟩+

∑
a<b,r<s

crsab|Ψrs
ab⟩+

∑
a<b<c,r<s<t

crstabc|Ψrst
abc⟩ (1.27)

By summing over a < b and summation over r < smeans summing over all unique pairs of occupied

(χa, χb, ...) and virtual (χr, χs, ...) spin orbitals. The wave function with all the configurations to

represent the exact state is called the Full Configuration Interaction (FCI) wave function.

Given that there are 2K total spin orbitals and N electrons, the number of possible determinants

is 2kCn, so the wave function representing the FCI through this set of orbitals will have 2kCn

different N-electron wave functions.

In simple symbolic form, this looks like this

|Φ0⟩ = c0|Ψ0⟩+ cS |ΨS⟩+ cD|ΨD⟩+ cT |ΨT ⟩+ · · · (1.28)

where |S⟩ is a term representing a single excitation, |D⟩ is a double, then a triple .... and so on.

The FCI matrix to calculate the energy using this is expressed as follows
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Figure 1: The Full CI matrix

Full Configuration Interaction is the most accurate way to find the wave function for a given orbital

set, but it is very computationally intensive. Instead of the full CI, we can use doubly excited

configuration interaction(DCI) and singly and doubly excited CI(SDCI).

Looking at the (Figure 1), there is no coupling between the ground state and the singly excited

state, so the single excitation is not used directly to find the correlation energy of the ground state.

So we create a DCI that only considers the doubly excitation term when thinking of the least

excitation linear combination.

|ΦDCI⟩ = |Ψ0⟩+
∑

c<d,t<u

ctucd|Ψtu
cd⟩ (1.29)

Also, the SDCI for a singly and doubly excited term is

|ΦSDCI⟩ = |Ψ0⟩+
∑
ra

cra|Ψr
a⟩+

∑
c<d,t<u

ctucd|Ψtu
cd⟩ (1.30)

1.4 Coupled Cluster(CC)

Since the CI method only uses specific excitation terms, it is limited in its ability to approximate

an infinite system. We will see how this method uses the concept of coupled clusters to represent

more pictures.

Now we will introduce a method to include not only double excitations here, but also quadruples,

hextuples, ..., 2nth-tuples by using exponenetial operator. This is called the coupled cluster

approximation .

It is expressed as

|ΦCCA⟩ = exp(T2)|Ψ0⟩ (1.31)

where T2 is 1
4

∑
abrs c

rs
aba

†
ra

†
sabaa. We call the operator T the cluster of the wave function.

Since expanding the exponential can be written as exp(x) = 1+x+( 12 )x
2+ · · · , we can also expand
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the wave function represented by CCA.

|ΦCCA⟩ = (1 +
1

4

∑
abrs

crsaba
†
ra

†
sabaa +

1

32

∑
abcd,rstu

crsabc
tu
cda

†
ra

†
sabaaa

†
ta

†
uadac + · · · )|Ψ0⟩

= |Ψ0⟩+
1

4

∑
abrs

crsab|Ψrs
ab⟩+

1

32

∑
abcd,rstu

crsabc
tu
cd|Ψrstu

abcd⟩+ · · ·
(1.32)

Similarly, single terms can be stacked on top of an exponential. In this case, the single cluster

is T1 =
∑

ar c
r
aa

†
raa. This can be expressed as |ΦCCA⟩ = exp(T1 + T2)|Ψ0⟩, which is the CCSD

method.

This method allows more configuration to be included, but may be less accurate on small systems

because each parameter is dependent of the others.

1.4.1 Unitary Coupled Cluster (UCC)

To represent the general cluster operator, we can write T = T1 + T2 + · · · .

T1 =
∑
ar

craa
†
raa

T2 =
∑
abrs

crsaba
†
ra

†
sabaa

(1.33)

Combining the cluster operator and its complex conjugate operator over the exponential produces

a unitary operator.

|ψ⟩ = eT −T †
|Ψ0⟩ (1.34)

which gives us a unitary representation of the operator. This representation is called a unitary

coupled cluster.

A simple proof of why the operator (1.34) is unitary is as follows.

eT −T †
= exp(

∑
ar

craa
†
raa +

∑
abrs

crsaba
†
ra

†
sabaa + · · · ) · exp(−

∑
ar

craara
†
a +

∑
abrs

crsabarasa
†
ba

†
a − · · ·)

= exp(
∑
ar

craara
†
a +

∑
abrs

crsabarasa
†
ba

†
a + · · · ) · exp(−

∑
ar

craa
†
raa −

∑
abrs

crsaba
†
ra

†
sabaa − · · ·) = eT

†−T

∴ eT −T †
= eT

†−T

(1.35)

The operator to create wave function from the initial wave function is called ansatz. If the ansatz

is unitary, it can be used in quantum computer algorithms. In our VQE calculation, which we will

discuss later, we will use the unitary coupled cluster ansatz.

Example 4.2.1)

Proof the equation (1.35) for cluster operator T = T1 + T2 , number of electrons N = 2,

number of spin orbitals 2K = 4
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2 Basics of Quantum Computer

양자 단위에서 일어나는 현상을 고전 컴퓨터로 재현하는 일은 너무 많은 computational cost를 소모

하는 탓에 풀기 어렵습니다. Richard P. Feynman은 이런 문제를 양자적인 성질을 띄는 물질을 연산

단위로 사용함으로 해결할 수 있다고 주장했습니다. 실제로 양자 컴퓨터는 구조적으로 고전 컴퓨터와

연산의 방식이 다르고, 고전 컴퓨터에서는 polynomial time 안에 풀 수 없다고 여겨지는 문제들이

양자 컴퓨터로는 풀 수 있음이 밝혀지기도 했습니다.

Electronic structure theory에서 다루는 문제들 중 분자의 ground state energy를 정확하게 계산하는

문제 역시 고전 컴퓨터로 풀기 어려운 문제 중 하나로, 양자 컴퓨터를 활용하여 풀 수 있을 것이라고

전망하여 많은 학자들이 연구하고 있습니다.

해당 단원에서는 양자컴퓨터의 구성원소인 qubit, gate, circuit과 그것의 기술 방법에 대해 다룹니다.

도움이 될 자료) Youtube: How to make a Quantum Bit - Veritasium

Wikipedia: Quantum logic gate

HORIZON 칼럼: 믿기 힘든 양자[7]: 두 상태 이야기

HORIZON 칼럼: 믿기 힘든 양자[8]: 위상의 귀환

HORIZON 칼럼: NISQ 시대의 양자 컴퓨터

2.1 Qubit

고전 컴퓨터의 연산 단위인 bit가 0 혹은 1 두 상태 중 하나로 표현된다면, 양자 컴퓨터의 기본적인

연산 단위인 qubit은 두 상태 0과 1의 superposition으로 표현됩니다. Qubit은 양자역학의 대표적인

예시인 two-state problem으로 표현할 수 있으며, Z basis인 ket |0⟩과 |1⟩을 사용하여 다음과 같이
쓸 수 있습니다:

|ψ⟩ = a |0⟩+ b |1⟩ , a, b ∈ C, ⟨ψ|ψ⟩ = |a|2 + |b|2 = 1

이 때 C 는 복소수 집합입니다. 우리는 |ψ⟩가 normalized되어 있다는 조건과, |ψ⟩의 global phase eiΦ

은 임의로 정할 수 있다는 성질을 사용하여 |ψ⟩를 다음과 같이 표현하기도 합니다:

|ψ⟩ =��e
iΦ

{
cos

θ

2
|0⟩+ sin

θ

2
eiϕ |1⟩

}
Qubit을 vector로 표현할 때에는 다음처럼 표기합니다:

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
, |ψ⟩ =

(
cos θ

2

sin θ
2e

iϕ

)

Qubit 하나는 자유도가 2개이기 때문에, 같은 자유도를 가진 구 표면 위의 한 점으로 표현할 수

있습니다. 이를 Bloch sphere라고 합니다. 후술하겠지만, qubit의 개수가 증가하면 자유도가 기하급

수적으로 증가하기 때문에 모든 qubit을 Bloch sphere로 기술할 때에는 유의해야 합니다.

Figure 2: Bloch Sphere, Wikipedia, Bloch Sphere
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Bra는 ket의 complex conjugate입니다.

⟨ψ| = |ψ⟩† =

(
a

b

)†

=
(
a∗ b∗

)
Z basis가 아닌, X basis나 Y basis으로 표현할 때는 다음처럼 표기합니다:

X basis: |+⟩ = 1√
2

(
1

1

)
, |−⟩ = 1√

2

(
1

−1

)

Y basis: |+i⟩ = 1√
2

(
1

i

)
, |−i⟩ = 1√

2

(
1

−i

)

2.1.1 Multiple Qubit

Quantum computer는 보통 여러 qubit으로 이루어져 있습니다. 두 개의 qubit으로 이루어진 state는

다음과 같이 표현합니다:

|ψ⟩ = c00 |00⟩+ c01 |01⟩+ c10 |10⟩+ c11 |11⟩

만약 두 qubit이 서로 독립인 경우에는 각 qubit들의 tensor product로 표현할 수도 있습니다:

|ψ1⟩ = |α⟩ ⊗ |β⟩ =

(
α0

α1

)
⊗

(
β0

β1

)
=


α0 ·

(
β0

β1

)

α1 ·

(
β0

β1

)


=


α0β0

α0β1

α1β0

α1β1


= α0β0 |00⟩+ α0β1 |01⟩+ α1β0 |10⟩+ α1β1 |11⟩

Qubit들이 서로 독립으로 존재할 것이라는 인식을 하기 쉬운데, 여러 qubit들이 entangle되어있을

경우 tensor product로 표현할 수 없습니다.

편의상 ket간의 tensor product를 축약하여 하나의 ket으로 표기하기도 합니다(bra도 동일합니다).

|0⟩ ⊗ |1⟩ ≡ |01⟩ , |α⟩ ⊗ |β⟩ ≡ |αβ⟩

필요한 경우 ket 안에 있는 수를 2진법 정수로 취급하여 표기하기도 합니다 (e.g. |110⟩ ≡ |6⟩). 이렇게
표기할 경우 ket 안의 정수가 matrix representation의 index와 같아집니다.
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2.2 Gate & Circuit

Quantum algorithm은 주어진 qubit에 의도한 operation을 가하고 그 현상을 관찰하는 작업을 일컫

습니다. Quantum algorithm을 이해하기 위해서는 operation을 배치하는 방법과, 만들어진 operation

을 알맞게 interpret하는 방법을 알아야 합니다. 이 section에서는 operation을 배치하는 법과, 그것을

읽는 방법에 대해 다룹니다.

2.2.1 Pauli Matrix

Pauli matrix는 spin state basis를 eigenstate로 가지는 2× 2 matrix의 basis들로, 다음과 같습니다:

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)

가령 Z의 eigenvector는 |0⟩과 |1⟩이고, X의 eigenvector는 |+⟩과 |−⟩인 셈입니다. Pauli matrix는

Hermitian이고, unitary합니다. Pauli Matrix는 spin momentum을 설명하는 데 핵심적이기 때문에,

앞으로 다룰 operation에서 자주 등장합니다.

2.2.2 Circuit Representation and Gates

Quantum algorithm을 이해하는 데에는, system에 가해지는 operation의 순서가 중요합니다(이는

operation이 non-commute하기 때문입니다). 일련의 operation을 직관적으로 표현하기 위해 우리는

circuit이라고 부르는 diagram을 사용합니다:

|ψ0⟩ U

|ψ1⟩

Figure 3: Example of a single qubit quantum circuit

Circuit위의가로줄은각각 qubit하나를상징합니다. Circuit위에표현된 operation은 gate이라고부

릅니다. Qubit state의 vector representation과마찬가지로, operation들은모두matrix representation

으로 표현할 수 있습니다. 이 때 모든 operation은 반드시 unitary해야 합니다. Figure 3을 수식으로

표현하면 아래와 같습니다:

|ψ1⟩ = U |ψ0⟩

Figure 4은 two qubit circuit의 한 예시입니다:

|ψ1⟩ |ψ2⟩
|α⟩ H •

|β⟩

U1 U2
m0 m1

Figure 4: Example of a two qubit quantum circuit

위 circuit에 사용된 gate는 Table 1을 참조하기 바랍니다.
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Table 1: List of quantum logic gates
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Multi qubit circuit에서 gate를 표현할 때에는 tensor product을 사용합니다. 다음은 |ψ1⟩과 U1을

수식으로 표현한 것입니다:

|ψ1⟩ = |α⟩ ⊗ |β⟩

U1 = H ⊗ I

=

{
1√
2

(
1 1

1 −1

)}
⊗

(
1 0

0 1

)

두 개 이상의 qubit에 동시에 작용하는 gate는 작은 단위의 gate들의 tensor product로 표현되지 않습

니다. |α⟩와 |β⟩가 전부 |0⟩일 때 U2와 |ψ2⟩룰 수식으로 표현하면 다음과 같습니다:

U2 = |0⟩ ⟨0|c ⊗ It + |1⟩ ⟨1|c ⊗Xt =

(
I O
O X

)
=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


|ψ2⟩ =

1√
2
(|00⟩+ |11⟩)

래첨자 c와 t는 control qubit과 target qubit을 뜻합니다.

위 예시에서 U2 gate는 Controlled X (혹은 CX, CNOT) gate라고 불립니다. Controlled U gate는

control qubit(점으로 표현합니다)의 상태에 따라 target qubit(gate 모양으로 표현합니다)에 U gate

시행 여부가 결정되는 multi-qubit gate 입니다. 위 예시에서는 control qubit인 |α⟩이 |1⟩일 때 target

qubit인 |β⟩에 X gate가 시행됩니다.

|ψ2⟩는 Bell state라고 불리며, 두 qubit의 tensor product로 표현할 수 없는 entangled state의

대표적인 예시입니다.

∄ |ϕ0⟩ , |ϕ1⟩ such that

|ψ2⟩ =
1√
2
(|00⟩+ |11⟩)

= |ϕ0⟩ ⊗ |ϕ1⟩

많이 쓰이는 quantum gate들의 목록을 보려면 Table 1를 참조하십시오.

Example 1)

N > 2인 N에 대해서, N 개의 Bloch sphere로 N qubit을 표현할 수 없음을 Degree of

freedom을 활용하여 설명하여라.

Example 2)

|χ0⟩ H

|χ1⟩ H
...

|χn−1⟩ H

|ψ⟩

a) |χall⟩ = |0⟩일 때, |ψ⟩ = 1
√
2
n

2n−1∑
j=0

|j⟩ 임을 보여라.

b) |χn−1⟩ = |1⟩ , |χelse⟩ = |0⟩일 때, |ψ⟩을 Σ j 에 관한 식으로 표현하여라.

c) |χall⟩ = |1⟩일 때, |ψ⟩을 Σ j 에 관한 식으로 표현하여라.
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hint) n=2일 때부터 보인 뒤, 일반화를 시도하십시오.

이 예제는 3.1를 이해하는데 도움이 될 예제이므로 풀어보기를 권장합니다.

2.3 Measurement

양자의 특성상, 한 번 system을 관측하면 그 system은 관측된 state로 확정되고 이외의 state들은

모두 collapse합니다. 그러니 우리가 관찰하고 싶은 어떤 state가 여러 state의 중첩으로 표현된다면,

한 차례의 관측만으로는 여러 중첩을 모두 표현할 수 없을 것입니다. 우리는 관측하고 싶은 state를

구현한 circuit을 N (≥ 1000) 회 시행하여, 각각의 measurement를 수합해 state의 각 state의 확률을

계산합니다. 수식으로 |j⟩의 확률 P (|j⟩)은 다음과 같습니다:

|ψ⟩ =
2N−1∑
j=0

cj |j⟩ , P (|j⟩) = c∗jcj

Fig 4의 예시를 들면:

|ψ2⟩ =
1√
2
|00⟩+ 1√

2
|11⟩

P (|00⟩) = P (|11⟩) = 1

2
, (|01⟩) = P (|10⟩) = 0

위 measurement로 우리는 각 state의 모든 coefficient를 알 수는 없지만, 적절한 물리량에 대한 기댓

값을 얻는 것은 가능합니다. 아래는 Fig 4에서 ⟨Z ⊗ Z⟩를 계산하는 식입니다:

⟨ψ2|Z ⊗ Z |ψ2⟩ =

〈
ψ2

∣∣∣∣∣
(
1 0

0 −1

)
⊗

(
1 0

0 −1

)∣∣∣∣∣ψ2

〉

= c∗00c00 − c∗01c01 − c∗10c10 + c∗11c11 =
1

2
− 0− 0 +

1

2
= 1

Example 3)

N qubit state |ϕN ⟩ =
∑2N−1

j=0 cj |j⟩에 대해 다음 기댓값을 cj에 관한 식으로 표현하여라.

a) ⟨ϕ3|Z ⊗ I ⊗ Z|ϕ3⟩
b) ⟨ϕ2|X ⊗ I|ϕ2⟩
c) ⟨ϕ2|X ⊗ Y |ϕ2⟩
d) P (|a 0 b⟩) + P (|a 1 b⟩) = P (|a b⟩) 로 표기하기로 하자.

다음 circuit은 |χ1⟩을 측정하지 않는다. 아래 circuit에서 수집한 data로도 a)의 기댓값을

계산할 수 있음을 보여라:

|χ0⟩
|χ1⟩
|χ2⟩

|ϕ3⟩ m0 m2

e) 우리는 측정을 통해 p (j) = c∗jcj 만 얻을 수 있다. b)와 c)의 기댓값을 얻기 위해서는

circuit을 다르게 구성해야 한다. 다음 circuit을 통해서 c)를 계산할 수 있음을 보여라:

|χ0⟩ H

|χ1⟩ S† H

|ϕ2⟩ m0 m1
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2.4 Fermionic space to qubit space transformation

The wave function and hamiltonian can be represented in terms of fermionic operators. (The

creation and annihilation operator). Now let’s look at how these things are transformed in a

quantum computer. In this chapter, we will introduce how to efficiently encode the fermionic

operator on a quantum computer. [3]

2.4.1 The wave function in qubits

Before introducing the encoding method, we first see how a wave function can be represented in

qubits. By representing the wave function as an occupation number (ON) vector, we ensure

that qubits and orbitals have a one-to-one correspondence.

The ON vector is defined as follows.

|k⟩ = |k1, k2, . . . , kM ⟩, kp =

1, if ϕp occupied

0, if ϕp unoccupied
(2.1)

The kp is the occupation number, which is 1 if the spin orbital is occupied by an electron and

0 otherwise. We can make each of these occupation numbers correspond to a qubit. If the spin

orbital is occupied, the state of a qubit is |1⟩p and if it is unoccupied, |0⟩p.

For example, if the wave function |ϕ1ϕ2⟩ is represented by four qubits, it can be written as |1100⟩.
And this corresponds to four qubits as |1⟩, |1⟩, |0⟩, |0⟩.

2.4.2 The Jordan-Wigner encoding method

The Jordan-Wigner encoding is a method of transforming the fermionic operator into a linear

combination of Pauli operators that can be measured directly on a quantum computer. [4]

Figure 5: The mapping from fermions to qubits

If we do not consider the anti-commutation relation, the fermionic operators acting on the j-th

qubit can be represented as follows: the creation operator changes the qubit state |0⟩ into |1⟩,
and the annihilation operator changes the qubit state |1⟩ into |0⟩. This action can be directly
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transformed as a Pauli operator.

â†j → |1⟩⟨0|j =

[
0 0

1 0

]
=
Xj − iYj

2

âj → |0⟩⟨1|j =

[
0 1

0 0

]
=
Xj + iYj

2

(2.2)

where Xj and Yj are Pauli operators acting on the j-th qubit.

However, these transformation cannot preserve an anti-commutation property of fermionic opera-

tors, because there is no sign change. To preserve that we add the Pauli string (linear combination

of the Pauli operator), Z0 ⊗ · · · ⊗Zj−1. Note that Z0 ⊗ · · · ⊗Zj−1 has an eigenvalue of +1 if there

are an even number of occupied orbitals up to the jth qubit, and -1 if it is odd. This represent the

sign scription of fermionic operators.

|0⟩ Z

|0⟩ Z

|1⟩

(a) |001⟩ → |001⟩

|0⟩ Z

|0⟩ Z

|1⟩ Z

(b) |001⟩ → −|001⟩

|0⟩ Z

|1⟩ Z

|1⟩ Z

(c) |011⟩ → |011⟩

Figure 6: Example of applying the Z0 ⊗ · · · ⊗ Zj−1 operator

Finally, we have the following result.

â†j →
Xj − iYj

2
⊗ Z0 ⊗ · · · ⊗ Zj−1

âj →
Xj + iYj

2
⊗ Z0 ⊗ · · · ⊗ Zj−1

(2.3)

The Jordan-Wigner Encoding is a method that encodes locally for each orbital occupation. There

are other encoding methods as well, the parity method, which encodes based on the parity of the

orbitals, and the Bravy-Kitaev method, which encodes by considering both occupation and parity.

Example 3.2.1)

Suppose the fermionic operator is

1 + a†1a0

Using the Jordan-Wigner method, represent it as a linear combination of Pauli strings.

2.5 Common Facts about Quantum Computer

임의의 unitary matrix가 있을 때, 그것을 시행하는 multi-qubit gate를 반드시 만들 수 있음이 증명되

어있습니다.그런점에서양자컴퓨터는거대한 unitary matrix calculator라고볼수있습니다.거대한

행렬연산이고전컴퓨터의가장큰병목이었다면,양자컴퓨터는 (설계를잘한다면)훨씬효율적이고

빠르게 연산할 수 있다는 점이 양자컴퓨터의 특징입니다.

현재 양자 컴퓨터는 여러 기술적인 한계를 맞고 있습니다. Qubit의 개수도 20 ∼ 30개 정도이고,

gate들의오차도무시할수없는수준입니다.이런양자컴퓨터를 Noisy Intermediate-Scale Quantum

computer(NISQ)라고부릅니다. NISQ에서구현할수있는양자알고리즘은상당히제한되어있습니

다. 동시에 3개 이상의 qubit을 entangle하는 연산은 오차가 심해 2 qubit gate들의 조합으로 대체해야

하고, Circuit depth(multi qubit gate의 개수를 일컫습니다) 역시 너무 커지면 오차가 지수적으로

증가하므로 이 점에 유의하며 양자 알고리즘을 설계해야 합니다.
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3 Quantum Phase Estimation(QPE)

Electronic structure theory involves the calculation of energy and configuration for a stationary

system. While full configuration interaction (full-CI) calculation is known for its highest accuracy,

it has been proven intractable for classical computers. Consequently, the primary challenge in this

field is to perform this calculation with lower computational costs.

Quantum phase estimation, which we will cover in this section, is the quantum algorithm

supposed by John von Neumann. QPE offers the advantage of computing eigenvalues with de-

sired precision (in terms of significant figures), thereby providing high computational accuracy.

Specifically, it enables us to calculate the eigenvalue of a Hamiltonian, allowing us to determine

the energy of a given system. However, implementing the QPE algorithm in NISQ devices poses

a challenge due to its significant circuit depth. As a result, the practical implementation of QPE

remains challenging at present.

Handout QFT

Handout QPE

Qiskit: Quantum Fourier Transform

Qiskit: Quantum Phase Estimation

Youtube: But what is a Fourier Transform? A visual introduction - 3B1B

Youtube: What is a Discrete Fourier Transform? - Grant Sanderson

Youtube: Fast Fourier Transform explained - Veritasium

3.1 Quantum Fourier Transformation(QFT)

QFT is the first algorithm you need to know to understand QPE. It’s a qubit-mapped illustration

of the Discrete Fourier transform. In that sense, learning about Discrete Fourier Transform

with supporting resources will be important to understand this chapter[5][6].

3.1.1 Theoretical Background

We can write Discrete Fourier Transform as follows:

ṽj =
1√
N

N−1∑
k=0

e
−
2πi

N
kj
vk ≡

∑
k

Ujkvk

⃗̃v = Uv⃗

(3.1)

The equation denotes rotation of vector v⃗ = (v0, v1, · · · , vN−1) to ⃗̃v = (ṽ0, ṽ1, · · · , ṽN−1) by operat-

ing unitary matrix transformation U. The same operation can also be performed by basis rotation

x̂k to new basis ŷj , which is opposite-direction rotation to v⃗→ ⃗̃v. In this case, vector v⃗ should be

fixed under basis rotation.

ŷj =
1√
N

N−1∑
k=0

e

2πi

N
kj
x̂k =

∑
k

x̂kU
∗
kj (3.2)

Imagine the state |ψ⟩ consisting of n qubits. We can consider it as a normal vector belonging to

C2
n
space.
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|ψ⟩ =


c0

c1
...

c2n−1

 =

2n−1∑
k=0

ck|k⟩ (3.3)

By substituting |k⟩ at (3.3) to x̂k at (3.2), rotated basis |j̃⟩ corresponding to ŷj(3.2) can be written

as follows(3.4):

|j̃⟩ = 1√
N

N−1∑
k=0

e

2πi

N
jk
|k⟩ (letN = 2n)

=
1

√
2
n

{0,1}∑
x0,··· ,xn−1

e

2πi

2n
j(2n−1x0+2n−2x1+···+xn−1)

|x0x1 · · ·xn−1⟩

=
1

√
2
n

{0,1}∑
x0,··· ,xn−1

e

2πi

2
jx0

e

2πi

2n
j(2n−2x1+···+xn−1)

|x0⟩ ⊗ |x1 · · ·xn−1⟩

=

 1√
2

{0,1}∑
x0

e

2πi

2
jx0

|x0⟩

⊗

 1
√
2
n−1

{0,1}∑
x1,··· ,xn−1

e

2πi

2n
j(2n−2x1+···+xn−1)

|x1 · · ·xn−1⟩


=

 1√
2

|0⟩+ e

2πi

2
j
|1⟩

⊗

 1
√
2
n−1

{0,1}∑
x1,··· ,xn−1

e

2πi

2n
j(2n−2x1+···+xn−1)

|x1 · · ·xn−1⟩


=

n−1⊗
m=0

 1√
2

|0⟩+ e
2πi

j

2m+1 |1⟩



(3.4)

See equation (3.4). We can find that if we substitute |0⟩ ∼ |2n − 1⟩ in the place of the basis x̂k of

the Discrete Fourier Transform expression, the result will naturally be reduced to a tensor product

of n qubits.

3.1.2 Circuit

Figure 7 is a quantum circuit representation of the equation (3.4). Before describing the QFT

circuit, let’s first define the CRn gate:

let Rn ≡

(
1 0

0 e
2πi
2n

)
= RZ

(
2π

2n

)

then CRn ≡ |0⟩ ⟨0|c ⊗ It + |1⟩ ⟨1|c ⊗Rn,t =


1 0 0 0

0 e
2πi
2n 0 0 0

0 0 1 0

0 0 0 e
2πi
2n 1

 ≡ Ic ⊗RZ

(
2π

2n
χc

)
t

(3.5)

In (3.5), the CRn gate appears to impose an RZ (2πχc/2
n) transformation on the target qubit

only, without changing the control qubit (the two qubits are not independent; since χc is the state

of the control gate!).

QFT circuit can be illustrated as:
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|χ0⟩ H R2 · · · Rn−1 Rn · · · · · ·

|χ1⟩ • · · · H · · · Rn−2 Rn−1 · · ·
...

|χn−2⟩ · · · • · · · • · · · H R2

|χn−1⟩ · · · • · · · • · · · • H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩ |ψ5⟩
Figure 7: Circuit of QFT

Let’s check the state in the middle of the circuit:

|ψ0⟩ = |χ0χ1 . . . χn−1⟩ ≡ |X⟩ (3.6)

|ψ1⟩ = {H |χ0⟩} ⊗ |χ1 . . . χn−1⟩

=
1√
2

{
|0⟩+ e

2πi
2 χ0 |1⟩

}
⊗ |χ1 . . . χn−1⟩ (3.7)

|ψ2⟩ =
1√
2

(
RZ

(
2π

2n
χ1

){
|0⟩+ e

2πi
2 χ0 |1⟩

})
⊗ |χ1 . . . χn−1⟩

... (3.8)

=
1√
2

{
|0⟩+ e

2πi
2 χ0e

2πi
22

χ1 |1⟩
}
⊗ |χ1 . . . χn−1⟩ (3.9)

|ψ3⟩ =
1√
2

{
|0⟩+ e

2πi
2n (χ02

n−1+χ12
n−2+···+χn−12

0) |1⟩
}
⊗ |χ1 . . . χn−1⟩

=
1√
2

{
|0⟩+ e

2πi
2n X |1⟩

}
⊗ |χ1 . . . χn−1⟩ (3.10)

In this case, X = χ02
n−1+χ12

n−2+· · ·+χn−12
0. See |ψ3⟩; we can find that the first qubit becomes

a similar form to the last line of eq.(3.4).

|ψ4⟩ =
1

√
2
2

{
|0⟩+ e

2πi
2n X |1⟩

}
⊗
{
|0⟩+ e

2πi

2n−1 (χ12
n−2+χ22

n−3+···+χn−12
0) |1⟩

}
⊗ |χ2 . . . χn−1⟩

=
1

√
2
2

{
|0⟩+ e

2πi
2n X |1⟩

}
⊗
{
|0⟩+ e

2πi

2n−1 (X−χ12
n−1) |1⟩

}
⊗ |χ2 . . . χn−1⟩

=
1

√
2
2

{
|0⟩+ e

2πi
2n X |1⟩

}
⊗
{
|0⟩+ e

2πi

2n−1 X |1⟩
}
⊗ |χ2 . . . χn−1⟩ (3.11)

Thus, one part of the circuit can convert a qubit to a Fourier basis.

|ψ5⟩ = QFT |X⟩ = 1
√
2
2

{
|0⟩+ e

2πi
2n X |1⟩

}
⊗
{
|0⟩+ e

2πi

2n−1 X |1⟩
}
⊗ · · · ⊗

{
|0⟩+ e

2πi
2 X |1⟩

}
=

n−1⊗
m=0

{
|0⟩+ e

2πi

2n−m X |1⟩
}

(3.12)

Let’s compare equation(3.4) with equation(3.12). We can see that the two are the same equation,

except that the domain of the tensor product has been flipped from m + 1 to n - m (this can also

be equalized by adding swap gate to Figure 7’s |ψ5⟩).

3.1.3 Explanation

The main point of QFT lies in the conversion between Z axis basis and the Fourier basis. The

Fourier basis is depicted on the equator of the Bloch sphere, guided by the intuition that the
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Figure 8: Z axis basis(up) and Fourier basis(down) of qubits

rotated phase angles return to their original positions with the periodicity of 2π. Figure 8 is a

visualized example of qubit state |X⟩ = |13⟩. You can see the visualized material of the above

transformation in Chapter 2.1 of Qiskit Tutorial - Quantum Fourier Transform.

As discussed in Chapter 2.5, every quantum circuit represents a unitary operation, ensuring re-

versibility. Hence, the inverse Quantum Fourier Transform operation (QFT †) is also possible,

enabling the transformation of the Fourier basis to the Z-axis basis. The QFT † operation holds

significant importance in Quantum Phase Estimation (QPE), which will be described later in this

section.

Example 4)

Calculate QFT 3 |5⟩ on a 3 qubit circuit system.

Example 5)

Perform the QFT circuit by using Qiskit.

3.2 Quantum Phase Estimation

Quantum phase estimation(QPE) is a qunatum algorithm calculating the eigenvalue of the desired

operation. Inspired by the fact that QFT supports translation between the z-axis basis and the

Fourier basis, the objective is to map the eigenvalue to the Fourier basis and subsequently decode

it back to the Z-axis basis[7].

3.2.1 Theoretical Background

Lemma 1. The eigenvalue of unitary matrix U can always expressed in terms of eiθ.

proof. When |ψ⟩ is an eigenket of U ,

U |ψ⟩ = c |ψ⟩

⟨ψ|ψ⟩ =
〈
ψ|U†U |ψ

〉
= c†c ⟨ψ|ψ⟩

∴ c†c = 1, c = eiθ

For this reason, we call the eigenvalue c’s exponential part θ as a phase in the context of a unitary

operator.
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3.2.2 Circuit and Explanation

Let’s define the following operations on the desired operator H (in the case of electronic structure

theory, the Hamiltonian of a given system) and its eigenket |ϕi⟩.

H |ϕi⟩ = λi |ϕi⟩

let UH = eiτH

then, UH |ϕi⟩ = eiτλi |ϕi⟩

(3.13)

CUH ≡ |0⟩⟨0|c ⊗ It + |1⟩⟨1|c ⊗ UH,t

= I ⊗
(
eiτH

)χc
(3.14)

It’s similar to eq (3.5). However, note that the target qubit can also be a multi-qubit gate since H

is defined as a unitary operation of arbitrary size.

|0⟩ H · · · •

QFT †
...

|0⟩ H • · · ·

|0⟩ H • · · ·

|ψ⟩ /m CUH
20 CUH

21 · · · CUH
2n−1

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Figure 9: Circuit of QPE, working

In the above circuit, CUH
k means that the CUH gate has been implemented k times. In the

above circuit, the n measurement qubits have a control term added to them, and the state of each

measurement qubit determines whether the operation UH is performed on the |ψ⟩ qubit as a target.

Let’s check the state in the middle of the circuit:

|ψ0⟩ = |0⟩|0⟩ · · · |0⟩|ψ⟩ (3.15)

|ψ1⟩ =
1

√
2
n (|0⟩+ |1⟩)⊗n |ψ⟩ (3.16)

|ψ2⟩ =
1

√
2
n (|0⟩+ |1⟩)⊗n−1 ⊗

(
|0⟩+ e2πiθ·2

0

|1⟩
)
|ψ⟩ (3.17)

|ψ3⟩ =
1

√
2
n

(
|0⟩+ e2πiθ·2

n−1

|1⟩
)
⊗ · · · ⊗

(
|0⟩+ e2πiθ·2

1

|1⟩
)
⊗
(
|0⟩+ e2πiθ·2

0

|1⟩
)
|ψ⟩ (3.18)

=
1√
2n

2n−1∑
x=0

e2πixθ|x⟩|ψ⟩ (3.19)

|ψ4⟩ = QFT−1

[
1√
2n

2n−1∑
x=0

e2πixθ|x⟩

]
|ψ⟩ (3.20)

=
1√
2n

2n−1∑
x=0

e2πixθQFT−1

[
|x⟩
]
|ψ⟩ (3.21)

=
1√
2n

2n−1∑
x=0

e2πixθ
1√
2n

2n−1∑
y=0

e−
2πi
2n yx|y⟩|ψ⟩ (3.22)

Thus, the final state will be:
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|ψf ⟩ =
1

2n

2n−1∑
y=0

[
2n−1∑
x=0

e−
2πi
2n (y−2nθ)x

]
|y⟩ ⊗ |ψ⟩ (3.23)

The state is expressed with the qubit basis |y⟩, which is the Z-axis basis obtained by inverse QFT.

Now, we can define an error δ with condition 2nθ = a + 2nδ, where a is a closest integer to 2nθ.

Hence, with error term, equation (3.23) can be rewritten as:

|ψf ⟩ =
1

2n

2n−1∑
y=0

[
2n−1∑
x=0

e−
2πi
2n (y−a)xe2πiδx

]
|y⟩ ⊗ |ψ⟩ ≡

2n−1∑
y=0

cy|y⟩ ⊗ |ψ⟩ (3.24)

Finally, we can measure the value in the form of probability. The probability of finding |y⟩ = |a⟩ is

Pr(a) = |⟨a|ψ⟩|2 (3.25)

=

∣∣∣∣∣⟨a| 12n
2n−1∑
y=0

2n−1∑
x=0

e−
2πi
2n (y−a)xe2πiδx|y⟩

∣∣∣∣∣
2

(3.26)

=

∣∣∣∣∣ 12n
2n−1∑
x=0

e2πiδx

∣∣∣∣∣
2

(3.27)

When δ=0 in equation (3.27), you can easily see that Pr(a)=1.

3.3 Improving QPE with iteration

Iterative quantum phase estimation (IQPE) is an algorithm designed to complement the accuracy

problem of QPE. IQPE has the advantage of being unconstrained by the number of qubits. Even

with a limited qubit number, you can achieve any desired level of accuracy by increasing the number

of trials. Ultimately, the algorithm can provide the exact solution of the desired eigenvalue.

3.3.1 Theoretical Background

In the section of QPE, we already remarked that an eigenvector of the arbitrary unitary operator

U can be illustrated as U |ψ⟩ = eiθ = e2πiϕ. Because of the periodicity, the range should be limited

to 0 ≤ ϕ < 1. Now we can define a new operator for IQPE,

V̂k = [e−2πiϕk−1 V̂k−1]
2

when V̂0 = U . We will see how this operator can be applied to phase estimation.

At the first trial for k=0, let’s assume a condition 2nϕ ≥ 2nϕ0 so that 2nϕ0 becomes a lower bound

integer for the true value ϕ. Now we get the relation

ϕ ≥ ϕ0

At the second trial for k=1, let us operate V̂1 to |ψ⟩ to get an eigenvalue. Then we get V̂1|ψ⟩ =
[e−2πiϕ0U ]2|ψ⟩ = e2πi(ϕ−ϕ0)·2|ψ⟩. Same as we did in the first trial, we can also take a lower bound

value ϕ1 to the phase of V̂1. By rearranging the formula (ϕ− ϕ0) · 2 ≥ ϕ1,

ϕ ≥ ϕ0 +
1

2
ϕ1
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This can be carried out iteratively, taking only the lower bound ϕk value for each operation and

applying it to the formula below. The more the number of trials k increases, the closer the right

side value is to the true value ϕ.

ϕ ≥ ϕ0 +
1

2
ϕ1 +

1

22
ϕ2 + ...+

1

2k
ϕk (3.28)

3.3.2 Circuit

Figure 10 is a quantum circuit of iterative QPE. The overall structure seems similar to the QPE

circuit, however, the controlled-U gate is replaced with a controlled-V̂k gate.

IQPE repeats the whole circuit while incrementing the value of trial k from 0 to desired value. We

will obtain the proper eigenvalue ϕk during each trial k and successively add it to the lower bound.

As shown in Equation (3.28), the lower bound increases as the number of trials increases, leading

to a value closer to the true value.

|0⟩ H · · · •

QFT †
...

|0⟩ H • · · ·

|0⟩ H • · · ·

|ψ⟩ /m V̂ 20

k V̂ 21

k
· · · V̂ 2n−1

k

Figure 10: Circuit of iterative QPE, where V̂k = [e−2πiϕk−1 V̂k−1]
2.
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4 Variational Quantum Eignensolver(VQE)

According to the variational principle, for arbitrary trial function, the following equation is true.

⟨ψ|H |ψ⟩ ≥ E0 (4.1)

If we can make an exact function by making appropriate changes to the trial function, we can

obtain the ground energy of the molecular system. Therefore, if you can set the appropriate vari-

ation, it means that you can apply the variational method effectively. It was confirmed that the

variation can be implemented using various gates in quantum algorithms(called ansatz), and based

on this, a quantum algorithm that approximates the ground state called variational quantum eigen-

solver(VQE) was studied.[3]

VQE is divided into 4 major procedure, setting initial state, changing initial state to trial state,

measuring and optimizing. First, we set ground state as initial state, then, we set a trial function

by operating the given ansatz which depends on a parameter θ in the initial state. It computes

the expectation value of a physical quantity from measurement process. Then, through a clas-

sical optimization process, it reduces the expectation value to the minimum value by updating

the parameter(ansatz) and trial function and by iterating the measurement. We are focus on an

explanation about overall procedure excepted for optimization.

Figure 11: VQE overall scheme

4.1 Initialization

We need to represent the electronic wavefunction in terms of qubits to calculate the ground state

energy for the molecule of interest. The important points are to figure out the number of orbitals

and the number of electrons in the molecular system, and to choose a wavefunction than can well

describe the ground state. Therefore, in generally, Hartree-Fock ground state is chosen as an initial

state. (1.10) In the case of an inappropriate initial state(if not satisfy the above two conditions), it

will converge to an incorrect result, so setting the initial state properly is the first thing to consider

in VQE.
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Let’s understand the initialization process through H2 molecule example. The molecule has a

system of 4 orbitals and 2 electrons.(2 occupied, 2 unoccupied) So we have to set the initial state

to two |1⟩(occupied) and two |0⟩(unoccupied). (2.1) From the four qubits set to |0⟩, the initial state
is set by operating X gates on the first and second qubits.

|0⟩ X |1⟩

|0⟩ X |1⟩
|0⟩ |0⟩
|0⟩ |0⟩

|ψHF ⟩

Figure 12: setting initial state of H2 molecule

4.2 Ansatz

Ansatz selection is important part of eigensolver and the main purpose of this is to change a given

initial state into a trial function. It mixes from the initial state to the superposed state using

various gates such as control gate and rotation gate. Although the characteristic of ansatz may

vary depending on the purpose of calculation, two things should be basically satisfied. It should

be possible to describe all state of interest and also make the trial state converge to exact state.

A typical example is UCC ansatz, which can conveniently express the excited state of electrons.

However, since the number of iteration required for convergence increases if the expressibility is

high, it is important to choose an appropriate ansatz between expression and training.

|ψ⟩ = U(θ) |ψHF ⟩ (4.2)

4.2.1 UCC Ansatz

We introduced UCC as an ansatz which can parameterize conveniently the excited electron state.

When these are single-electron excitations and double electron excitations, resulting in UCC Sin-

gle and Double(UCCSD), also can be extended to high order. Thanks to its unitary through the

exponential of an anti-Hermitian operator, it can be implemented as a quantum algorithm. (1.33)

Let’s learn how it is constructed on the circuit by following the process below using UCCSD

ansatz as an example. It is a central part of the UCCSD ansatz to encode the fermion operator

into Pauli words, the tensor product of the Pauli matrices. This is exactly same as the encoding

process learned above.

From 1.34, 2.3, UCCSD ansatz can be represented by Pauli matrix using JW encoding.

U(θ) = exp(
∑
a,r

θra(a
†
raa − a†aar) +

∑
a,b,r,s

θrsab(a
†
ra

†
sabaa − a†aa

†
basar))

= exp(
∑
j

θjAj)

= exp(
∑
j

icjPj)(P = p1 ⊗ p2 ⊗ · · · ⊗ pn, p ∈ {I,X, Y, Z})

(4.3)

The next step, called Trotterization, is the process of approximating the exponentialized Pauli
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word to a product form. The approximation is needed because it is not ensured that eA+B = eAeB

when A, B is matrix. We convert the UCC ansatz into a series of parameterized quantum gates

which can directly be implemented on a quantum computer.

exp(
∑
j

icjPj) ≈
∏
j

(eicj
Pj

n
)n (4.4)

Then, rewrite exponentialized matrix. It is defined by expansion of Taylor series.

eA = A0 +A1 +
1

2
A2 + ... (4.5)

Using this equation, we can represent eiZθ and eiZZθ to matrix form, the result is below. We know

that eiZθ is rotation operator which rotate by θ phase around the Z axis.

eiZθ =

(
eiθ 0

0 e−iθ

)
= RZ(θ)

eiZZθ =


eiθ 0 0 0

0 e−iθ 0 0

0 0 e−iθ 0

0 0 0 eiθ


(4.6)

Since the matrix is unitary, it can be represented on the circuit.

• • • •
X • • X • •

X Rz(θ) X X X Rz(θ) X X

Figure 13: Ladder implement(left) and Star implement(right) of eiZZZIθ

Then how should we express the X and Y operators? We have dealt with a similar problem in

the previous measurement section. It needs to transform the basis of X and Y operator to the basis

of Z operator. It can be performed by placing H and S gates on the circuit. The X and Y operator

are transformed to the Z operator through the H gate and S, H gate, respectively. (2.3)

ecX = H · ecZ ·H

ecY = {HS†}† · ecZ ·HS†
(4.7)

S H • • H S† S H • • H S†

X • • X • •

H X Rz(θ) X H H X X Rz(θ) X X H

Figure 14: Ladder implement(left) and Star implement(right) of eiY ZXIθ
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4.3 Measurement

The Hamiltonian can be represented with linear combination of Pauli words using Jordan-Wigner

Encoding method. We can express the expectation value of the Hamiltonian by finding the expec-

tation value of the Pauli words. It is defined as a linear combination as shown the equation below.

(1.25, 2.3)

Helec =
∑
i

ciPi(P = p1 ⊗ p2 ⊗ · · · ⊗ pn, p ∈ {I,X, Y, Z})

⟨Helec⟩ =
∑
i

ci ⟨Pi⟩ =
∑
i

ci ⟨ψ|Pi|ψ⟩
(4.8)

As mentioned in chapter 1.3 (2.3), the probability is expressed by the coefficient of the statevector.

However, since we cannot track each statevector in real, we have to be obtain the probability by

measuring each qubits. The process of capturing a single state is called a shot, and the probability

of each state is obtained through enough N times of shot.

4.3.1 ⟨Z⟩ Measurement

Among the Pauli matrices, the measurement of the Z operator can be expressed as the difference

between the probabilities of |0⟩ and |1⟩ state because the matrices are diagonal. Additionally, the

expectation value of I operator must be 1. It means that I operator is independent to measurement

process. 2.3

⟨Z⟩ = ⟨ψ|Z|ψ⟩ =
(
c∗0 c∗1

)(1 0

0 −1

)(
c0

c1

)
= c∗0c0 − c∗1c1 = P (|0⟩)− P (|1⟩)

⟨I⟩ = ⟨ψ|I|ψ⟩ =
(
c∗0 c∗1

)(1 0

0 1

)(
c0

c1

)
= c∗0c0 + c∗1c1 = P (|0⟩) + P (|1⟩) = 1

⟨ZZ⟩ = ⟨ψ|ZZ|ψ⟩ =
(
c∗00 c∗01 c∗10 c∗11

)(1 0

0 −1

)
⊗

(
1 0

0 −1

)
c00

c01

c10

c11


= c∗00c00 − c∗01c01 − c∗10c10 + c∗11c11 = P (|00⟩)− P (|01⟩)− P (|10⟩) + P (|11⟩)

(4.9)

Assume the following two examples.

1. a total of 2048 shots, 0 state is 1023 and 1 state is 1025.

P (|0⟩) = 1023

2048
, P (|1⟩) = 1025

2048

⟨Z⟩ = P (|0⟩)− P (|1⟩) = − 2

2048
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2. a total of 2048 shots, 00 state is 255, 01 state is 769, 10 state is 767 and 11 state is

257.

P (|00⟩) = 255

2048
, P (|01⟩) = 769

2048
, P (|10⟩) = 767

2048
, P (|11⟩) = 257

2048

⟨ZZ⟩ = P (|00⟩)− P (|01⟩)− P (|10⟩) + P (|11⟩) = −1024

2048

However, it needs to transform the basis of X and Y operator to the basis of Z operator for

measurement of X and Y operator, since the probabilities can not express expectation value by

simply summation. (2.3)

⟨ZIXY ⟩ = ⟨ψ|ZIXY |ψ⟩ = ⟨ψ′|ZIZZ|ψ′⟩ (4.10)

H

S† H

Figure 15: ZIXY measure

We deal with a method to calculate the expectation value of 4 Pauli operators. Based on this, we

can reconstruct the expectation value of complex Pauli matrices constituting the Hamiltonian as

an equation of probabilities.

4.3.2 Grouping

In a real quantum computer system, since the measurement cost is proportional to the number of

measurements, methods to reduce it through post processing are proposed. One of them is grouping.

Some of numerous Pauli words have the same circuit diagram. Since this depends on the X and Y

operators, it is satisfy when the order of X and Y operators in Pauli words is same. The expectation

value of Pauli words belonging to a group is expressed as a combination of probabilities obtained

through the same measurement. For example, IZXI, ZIXY, ZZXI, ZIIY are belong to [ZZXY]

group.

H

S† H

Figure 16: ZZXY group
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4.4 Optimization

X S H • • H S†

X X • • X

H X Rz(θ) X H H

S† H

Initialization Ansatz Measurement

Figure 17: VQE scheme

Review the above overall VQE Scheme. We obtained the Hamiltonian energy of trial state through

the 3 procedures. However, it is not minimum energy we want, so it needs to optimize trial state

to exact state. This is same as determining the i+1 th parameter(θ(i+1)) of ansatz with i th (θ(i))

and the result, and iteratively performed until the Hamiltonian energy converges to the minimum.

There are two major categories of optimization, gradient-based optimizers and gradient-free opti-

mizers.[8] Gradient based optimizers require evaluation of gradient for optimization, and examples

include Gradient Descent (GD), Broyden-Fletcher-Goldfard-Shanno (BFGS) and Simultaneous

Perturbation Stochastic Approximation (SPSA). The opposite is called a gradient-free optimizer,

and representative Constrained Optimization BY Linear Approximation (COBYLA) and POW-

ELL exist. In fact, optimization is a field outside of our interest, so there will be no big problem

even if we just check the above.
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5 Homebuilt VQE manual

We prepared a full VQE code on a Google colab™.ipynb file you can run through.

5.1 Instruction Colab

First, you should clone the contents in Y.K.Ahn‘s Google drive directory. Download the full

contents at Google Drive File and upload the whole contents to your own Google Drive. Run

tutorial.ipynb and fㅋollow the instruction.

5.2 Instruction Local
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https://drive.google.com/drive/folders/1fLeBDAu9PaKRq-HsJnG43RT5qa6vXiZM?usp=share_link
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