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0 Introduction

This document is intended to guide basic knowledge of quantum computer and quantum
algorithm for pioneering electronic structure theory calculations using quantum computers,
especially Quantum Phase Estimation(QPE) and Variational Quantum Eigensolver(VQE).

This document covers terminologies and notations of quantum computer, scheme of electronic
structure theory, and some quantum algorithm examples for quantum chemistry.

Since this document is aimed for graduate school newcomer, it requires basic concepts of quantum

chemistry and linear algebra.

For any question or suggestion, please contact: Youngkyun Ahn (fib89Q@kaist.ac.kr), Sowon Kim
(sowonkim@kaist.ac.kr), Seungheon Choi (hunil123@kaist.ac.kr), and Hongseok Choi
(hongseok2204@kaist.ac.kr).

Contents
0 Introduction 1
1 Essential Electronic Structure Theory 3
1.1 Hartree-Fork(HF) approximation . . . . . ... ... ... ... ... ....... 3
1.1.1 The electronic problem . . . . . . .. .. . L o 3
1.1.2 Hartree-Fock equation . . . . . . ... .. . . Lo L 3
1.1.3 Fockoperator . . . . . . . . . . 4
1.1.4 The Hartree-Fock process (SCF method) . .. ... ... ... ... ... 4
1.1.5 Hartree-Fock limit . . . . . . . . ... .. . 5
1.1.6  Interpretation of solutions to the Hartree-Fock equation . . . . .. ... .. 5
1.2 Second Quantization . . . . . . . . . ... 6
1.2.1 Creation and Annihilation operators . . . . . . . . . ... .. ... ..... 6
1.2.2 Hamiltonian represented by second quantization . . ... ... ... .... 9
1.3 Configuration Interaction (CI) . . . . ... ... ... ... . ... ... ... 9
1.4 Coupled Cluster(CC) . . . . . . . . L 10
1.4.1  Unitary Coupled Cluster (UCC) . . . .. .. ... ... ... ... 11
2 Basics of Quantum Computer 12
21 QUDIE .« ot e e 12
2.1.1 Multiple Qubit . . . . . ..o 13
2.2 Gate & Circuit . . . . . . . 14
2.2.1 Pauli Matrix . . . .. .. . e 14



2.2.2  Circuit Representation and Gates . . . . . . .. ... ... ... ... ...

2.3 Measurement . . . . . ... e
2.4 Fermionic space to qubit space transformation . . . .. .. ... ... ... ...,
2.4.1 The wave function in qubits . . . . . .. ... o oL
2.4.2 The Jordan-Wigner encoding method . . . . .. .. ... ... ... ....
2.5 Common Facts about Quantum Computer . . . . . . . . .. .. ... ... .....

Quantum Phase Estimation(QPE)

3.1 Quantum Fourier Transformation(QFT) . . . . ... ... ... ... .. ...
3.1.1 Theoretical Background . . . . . . ... ... L L
3.1.2 Circuib . . . . . oo
3.1.3 Explanation . . . . .. .. Lo

3.2 Quantum Phase Estimation . . . . .. ... .. L 0 o
3.2.1 Theoretical Background . . . . .. ... ..o Lo
3.2.2 Circuit and Explanation . . . . . . . .. ..o

3.3 Improving QPE with iteration . . . . . . . . .. .. Lo oo
3.3.1 Theoretical Background . . . . .. ... ... oL
3.3.2 Circuib . . . . . . .

Variational Quantum Eignensolver(VQE)

4.1 Imitialization . . . . . . .. L e
4.2 Ansatz . . ...
421 UCC Ansatz . . . . .. .. e
4.3 Measurement . . . . ... Lo e e
4.3.1 (Z) Measurement . . . . . . ... u o e e
4.3.2 Grouping . . . . . .. e
4.4 Optimization . . . . . . . . e

Homebuilt VQE manual
5.1 Imstruction_Colab . . . . . . . . .. .

5.2 Instruction_Local . . . . . . . . . .

20
20
20
21
22
23
23
24
25
25
26

27
27
28
28
30
30
31
32



1 Essential Electronic Structure Theory

In this chapter we will summarize a part of the electronic structure theory that is necessary to
understand the following chapters. We're only going to cover the basic concepts here. If you want

more details, we recommend reading the book in the reference. [1]

1.1 Hartree-Fork(HF) approximation

Finding and describing an approximate solution to the electronic Schrodinger equation is the
main issue of electronic structure theory. In this section we will introduce the HF approximation
method, which is the starting point for solving the electronic Schrodinger equation for many-
electron problems. The HF method uses a mean-field approximation that use average field of the
electron correlations, so it does not yield an exact wave function. However, the HF method is used
to approximate electronic states, which are then used as the basis for other computational methods
(e.g. MP2, CCSD, CI, etc.).

1.1.1 The electronic problem

The solution to a Schrodinger equation involving the electronic hamiltonian (Eq. 1.24),
Helecq)elec = gelecq)elec (11)
is the electronic wave function,

Dejee = ‘I)elec({ri}; {RA}) (1'2)

where r; and R 4 is electrons and nuclei described by position vectors.

The total energy for fixed nuclei include the constant nuclear repulsion.
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gtot = gelec + Z Z R (13)
A=1B>A ~AB

Solving the equations (1.1) to (1.3) constitute the electronic problem. Note that the Hamiltonian
we are mainly focused on is the electronic Hamiltonian. (H = Hejec). By solving for these problem,
we get the wave function and energy. The wave function, which is the eigenvector of equation (1.1),

allows us to obtain about the electronic properties of molecules as well as their energy.

1.1.2 Hartree-Fock equation

The Hartree-Fock approximation method considers the many-electron problem as a one-electon
problem and the electron-electron interaction term as the average potential. So in this method, we

express the hamiltonian for a many-body electron as a sum of effective one-electron hamiltonians.

N
Hpor = Zf(l) (1.4)

The effective one-electron operator we use for this is called the Fock operator. The eigenvector

of the Fock operator is the spin orbital, and the eigenvalue is the energy of the each spin orbital.

F(@)x(xi) = ex(xi) (1.5)



where f(i) is Fock operator, x(x;) is spin orbital for i*" electron x;, and ¢ is eigenvalue of the

operator. We call the equation (1.5) as the Hartree-Fock equation.

1.1.3 Fock operator

The Fock operator has the following form

F) = —1v2 - f: Za | ey (1.6)
2 mria .

where v (i) is the average potential experienced by the i‘" electron due to the other electrons.

This potential v (i) is composed of coulomb(J) and exchange(K) potential.
(1) =Y (1) - Ki(1) (1.7)
b

The coulomb potential is caused by the interaction between one electron and another, and can
be interpreted as a probability density of the other electrons that affect it. It is a local potential

with a different electron in each orbital.

To(1)xa(1) = / a2 Pri xa(D) (18)

The exchange potential, on the other hand, is due to the anti-symmetry of electrons. This
potential represents the energy change due to the exchange of electrons and calculates the effect of
different orbitals on a single electron, rather than the effect of having one electron in one orbital.

In other words, they are non local operators that affect each other.

Ky(1)xa(1) = / dxx0(2) i3 xa(2)Xa(1) (1.9)

1.1.4 The Hartree-Fock process (SCF method)

The Hartree-Fock equation approximates the effect of other electrons as a field in order to find a
solution, which means that the resulting solution is nonlinear and must be calculated by iteration.
The method of solving the Hartree-Fock equation by calculating the field and updating it by
iteration is called the Self-Consistent Field (SCF) method. The SCF method is a method
that iterates the specific calculations with field until the self-consistency condition is satisfied. In
the HF method, the self-consistency condition is that the field v*¥(i) no longer change and the
spin orbitals are the same as the Fock operator eigenfunctions.

Here is a simple scheme of the SCF process.

1. Make an initial guess at the spin orbitals y(x;)
2. Calculate the average field v (i) that affects each electron x;
3. Solve the eigenvalue equation (1.5) to get a new set of spin orbitals x’(x;).

4. Using the new spin orbitals, obtain new average field v (i)

5. Iterate 2 - 4 until self-consistency is reached

In step 3, the new set of spin orbitals x’(x;) can be obtained from the eigenvectors of the Fock
operator f(i). And in step 5, if the field v*F (i) is no longer changing and the spin orbitals are the

same as the eigenfunctions of the Fock operator, the self-consistency condition is satisfied.



1.1.5 Hartree-Fock limit

If the initial iuput has a large number of basis sets, it has more flexibility to find a wave function
with lower energy. As we increase the number of basis sets, the energy continues to decrease until
it reaches a certain limit, which we call the limit as Hartree-Fock limit. The wave function at

the Hartree-Fock limit is the most accurate wave function that can be obtained by the HF method.

Summary of Hartree-Fock approximation

Purpose : the molecular orbital approximation to solve the electronic problem

Input & output : basis set — orthogonal set of molecular orbitals

Process : replace the multi-electron Hamiltonian with a sum of one-electron opera-
tors(Fock operators) — use the variational method to find the wave function with the
minimum energy for a given set of orbitals — calculates the correlation between electrons
as an average field — solves a nonlinear problem by iteration. (SCF process)

Result : wave function with a single Slater-determinant

This wave function is the best single-Slater determinant approximation that can

be made with a given basis set.

1.1.6 Interpretation of solutions to the Hartree-Fock equation

The HF solutions be used as a starting point for other advanced approximation methods.

When the wave function is represented by the K spatial orbitals, the number of spin orbitals(generated
for each « spin and f spin) is 2K. For N electrons, the eigenvectors corresponding to the energies
from the lowest to the N are called occupied spin orbitals, and the remaining 2K-N orbitals
are called virtual spin orbitals.

The Slater determinant of these orbitals forms the Hartree-Fock ground state.

o) = [x1X2 " XaXb - XN) (1.10)

The lowest energy state is represented by the ground state (1.10), but there are (2]{[( ) —1 other states.

The other states represent other possible determinant from the HF ground state, i.e. they can be
described as excited states from the occupied orbitals in the ground state to the unoccupied
orbitals in the virtual state.

The singly excited determinant excited from the occupied orbital, y,, to the virtual orbital,

Xr, can be represented as follows.

[Pa) = Ixix2 XrXb " XN) (1.11)

Also, the doubly excited determinant exciteed from the occupied orbitals x,, xp to the virtual

orbitals x,, xs is represented as follows.

[Wes) = [xaxz - XrXs - XN) (1.12)

All (2;,() determinants can thus be classified as either the HF ground state or single, doubly,
triply,..., N-tuply excited states. They are important as N-electron basis functions for an expansion
of the exact N-electron states of the system. We’ll use this excited determinant expression in the

next chapter.

We want a more accurate representation of the electronic wave function. The electron correlation



(Ecorr), which cannot be calculated by the Hartree-Fock method, is expressed as follows
Ecorr = 50 - EO (1.13)

( & : energy of the system, Fy : Hartree-Fock limit energy)

In the 1.3 and 1.4, we will introduce more accurate ways of representing wave functions: the
Configuration Interaction (CI) and Coupled Cluster (CC) methods. With these methods,
our goal is to find a lower energy by calculating E.y;.

The Hartree-Fock method allowed us to represent not only the ground state, but also singly, doubly,
and other excitations. The wave function predicted by the HF method is the ground single-Slater
determinant, which alone does not give an accurate wave function, but by using the other excitation
determinants of the HF method to express the wave function, a more accurate wave function can

be obtained.

1.2 Second Quantization

We have learn that the ‘Slater determinant’ allows us to express the antisymmetry property of the
electron wavefunction. The second quantization representation, on the other hand, allows us
to express the antisymmetry property as an ‘operator’. This representation gives the wavefunction
algebraic properties that facilitate a variety of calculations. It can be particularly useful in the multi-

electron problem because it allows us to conveniently manipulate the state of the electrons.[1][2]

1.2.1 Creation and Annihilation operators

In the second quantization, we define creation operator(a’) and annihilation operator(a) to

represent the wave function as an operator.

For an arbitrary Slater determinant |x;xx - x1), az and a; act as follows

allxk - xi) = Ixaxe - x1) (1.14)

ag| XXk X)) = IXk - X1)

In the above expression, a;r acts to create electrons in the spin orbital y; of the wave function

Ixixk - x1), and a; acts to annihilate electrons in the spin orbital x;.

Note the order of aj and a; : Each operator is applied to the slater determinant in turn, so that

the sign of the result is reversed when different operators are applied.

aIa}IXk X)) = al e X = Xk xa)
G}CLHXIC X)) = a;|XiXk CeXn) = IXGXXk X)) = — XXXk XT) (1.15)
ala] +afal = 0 = {a],a}

]

If the same operators are applied, the wavefunction collapses. For example, if the same creation
operators are applied to a wave function, the slater determinant will have two identical columns,

resulting in a zero value.

alallxk - x1) = allxixk - x1) = [xixixe - xi) =0 (1.16)



Also, if the same annihilation operators are applied to a wave function, the wave function will be

zero because it is impossible to destroy unoccupied orbital.
ai@i|Xixk - x1) = ailxe - x) = [xexi) =0
a;r and a; satisfy the anti-commutation relation with each other.

aia} + a;ai = 0;; = {a;, a}}

(1.17)

(1.18)



proof)  Anti-commutation relation
T

1. Consider the operator aiaj +a)a; acting on an arbitrary determinant |y - - - x;). If spin

orbital x; is not occupied in this determinant,

(aial + alai)|x; - xa) = aial|xe - xa) = ailxixe - x1) = [xx - x1) (1.19)

on the other hand, if x; is occupied,

(aiaf + alai)l - xi--xa) = alailxi - xa - x)

!

T (1.20)
= —a;ailxk- - Xi o xi) = —ag| -

Xk Xe) = Xk X Xa)
. T 1 — L. ol
Thus, a;a; +aja; =1 = {a;,a)}

2. Consider the operator aia;+a}ai (i # j) acting on an arbitrary determinant |y - - xi)-

If x; ¢ {k,...,l} or x; € {k,...,l}, each term can be zero because electrons in unoccupied
orbitals cannot be destroyed and electrons in occupied orbitals cannot be created.
If xi € {k,...,1} and x; ¢ {k,...,{}, the sum of the terms can be zero because of the

anti-symmetry property of determinant.

(aia;‘ + a;ai)b(k XX = _(aia;’ + a;ai>|Xi S Xk XU
— T
— _a X.X-...Xk...xl _a ...Xk...Xl

ilxsxi ) — ajl ) (1.21)

= @i XaXG Xk X)) —IXG Xk Xa)
G Xk X)) = G xee e xa) =

Thus, aia;{ + a;(ai =0= {ai,a;r} (if @ #j)

Lastly, we define a vacuum state | ) to fully express the properties of the Slater determinant
in the creation and annihilation operators. The vacuum state is a state with no electrons, so an

arbitrary wave function can be expressed from this state.

i) =all) (1.22)

It also satisfies the normalized condition like a wave function.

(1)=1 (1.23)

Example 3.1.1)  (Szabo P.90)
Show, using the properties of determinants, that
(ala} + abal)| ) = 0
for every |K) in the set [x1x2),[X1x3), [X1X4), [X2X3), [X2X4), [X3X4)




Summary) Properties of creation & annihilation operators

Loallxnxi) = xaxe - x1) > alxaxe--x1) = Ixe-x0)

2 ‘|>—0—<\zT
3. aTaT—l—a T=0={al,a ]} a;aj +aja; =0 ={a;,a;}
4. aiaj + ajai =0;; = {a,-,aj}

1.2.2 Hamiltonian represented by second quantization

With the Born-Oppenheimer approximation, we represent the electronic Hamiltonian as

N M 7
Hetee = Z S Sy A+ZZ— (1.24)

= i=1A=1"" i=1 j>1

=
N

This is the Hamiltonian describing the motion of N electrons in a field of M point charges, where Z 4
is the atomic number of the nucleus A and r is the distance between two electrons. The first term
is the operator for the kinetic energy of the electrons; the second term is the coulomb attraction
between electrons and nuclei; the third term represent the repulsion between electrons.

We can express this as a second quantization representation as

Hetee = Z hpqa ag+ = Z hpqrsapa:;a"ras (125)

pq qu‘i

where hy, is a one-electron integral and h.s is a two-electron integral.

pq = /QS;(T) <_;V2 - Z ]:,gIZirQSq(T))

hpgrs = /¢* 1)@ (12 ¢r(7"2)¢a(7"1)

[r1 — 72|

(1.26)

1.3 Configuration Interaction (CI)

The linear combination of all possible determinants that can be obtained from the Hartree-Fock
slater determinant makes the N-electron determinant set complete, allowing for an exact represen-

tation of any N-electron wave function.

|®) = colWo) + ZCZ|‘I’Z> + Z caplPap) + Z Cape| Uape) (1.27)
ra a<b,r<s a<b<c,r<s<t

By summing over a < b and summation over r < s means summing over all unique pairs of occupied
(Xas Xb, ---) and virtual (x, Xs,...) spin orbitals. The wave function with all the configurations to
represent the exact state is called the Full Configuration Interaction (FCI) wave function.
Given that there are 2K total spin orbitals and N electrons, the number of possible determinants
is 21 Cy, so the wave function representing the FCI through this set of orbitals will have o,C),
different N-electron wave functions.

In simple symbolic form, this looks like this

|®0) = co|Vo) + cs|¥s) + cp|¥p) + cr[Pr) + - (1.28)

where |S) is a term representing a single excitation, |D) is a double, then a triple .... and so on.

The FCI matrix to calculate the energy using this is expressed as follows



%2> ¥ PR [P

[¥o) $> D> IT> Q>

ol [(Wol#|¥o) 0 (¥o|lo#|D) 0 0 ]

¢s| (S|#|S) <S|#D) (S|#|T) 0

(D (D|#|D) <(D|#|T) (D|#|Q)

(T (T|#|T> <(T|#|Q>

«| Ql#|Q>

L . J

CEAIVERE HE 4} #4
(D|#|D) — (¥L| | ¥es)

Figure 1: The Full CI matrix

Full Configuration Interaction is the most accurate way to find the wave function for a given orbital
set, but it is very computationally intensive. Instead of the full CI, we can use doubly excited
configuration interaction(DCI) and singly and doubly excited CI(SDCI).

Looking at the (Figure 1), there is no coupling between the ground state and the singly excited
state, so the single excitation is not used directly to find the correlation energy of the ground state.
So we create a DCI that only considers the doubly excitation term when thinking of the least

excitation linear combination.

|®per) = [Wo) + Z coalUeg) (1.29)

c<d,t<u

Also, the SDCI for a singly and doubly excited term is

[Pspor) = [Wo) + D chlWn) + Y chi|Uly) (1.30)

c<d,t<u

1.4 Coupled Cluster(CC)

Since the CI method only uses specific excitation terms, it is limited in its ability to approximate
an infinite system. We will see how this method uses the concept of coupled clusters to represent

more pictures.

Now we will introduce a method to include not only double excitations here, but also quadruples,
hextuples, ..., 2nth-tuples by using exponenetial operator. This is called the coupled cluster
approximation .

It is expressed as

|®cca) = exp(T2)|Wo) (1.31)

where 73 is 2 3, crsalalaya,. We call the operator T the cluster of the wave function.

Since expanding the exponential can be written as exp(z) = 1+xz+ (%)xQ +- -+, we can also expand

10



the wave function represented by CCA.

1 1
Beca) = (1+7 Zc;zal laao+ 35 Y cictialalasaaafalaga, + )W)

abrs abed,rstu

= [Wo) 4§ S + o D cnetalur +

abrs abced,rstu

(1.32)

Similarly, single terms can be stacked on top of an exponential. In this case, the single cluster
is i = Y, chala,. This can be expressed as |[®cca) = exp(Ti + T3)|¥o), which is the CCSD
method.

This method allows more configuration to be included, but may be less accurate on small systems

because each parameter is dependent of the others.

1.4.1 Unitary Coupled Cluster (UCC)

To represent the general cluster operator, we can write 7 = 71 + T2 +

T = E crala,
ar
= E crsalalaya,

abrs

(1.33)

Combining the cluster operator and its complex conjugate operator over the exponential produces

a unitary operator.
) = 77" [Wp) (1.34)

which gives us a unitary representation of the operator. This representation is called a unitary
coupled cluster.

A simple proof of why the operator (1.34) is unitary is as follows.

eT=T" = exp( anaraa + ZcZiaT Tapaq + ) - exp(— Zc aral + Z ch barasab )

abrs abrs

= exp( Zc aral + Z cabarasaba + o) -exp(— Zc - Z csalalaya, — ) = =T

abrs abrs

(1.35)

The operator to create wave function from the initial wave function is called ansatz. If the ansatz
is unitary, it can be used in quantum computer algorithms. In our VQE calculation, which we will

discuss later, we will use the unitary coupled cluster ansatz.

Example 4.2.1)
Proof the equation (1.35) for cluster operator 7 = 77 + Tz , number of electrons N = 2,

number of spin orbitals 2K = 4

11



2 Basics of Quantum Computer
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Figure 2: Bloch Sphere, Wikipedia, Bloch Sphere
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2.2 Gate & Circuit
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Figure 3: Example of a single qubit quantum circuit
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Figure 4: Example of a two qubit quantum circuit
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Operator

Pauli-X (X)
Pauli-Y (Y)
Pauli-Z (Z)
Hadamard (H)
Phase (S, P)

7/8 (T)

Controlled Not
(CNOT, CX)

Controlled Z (CZ)

SWAP

Toffoli
(CCNOT,
CCX, TOFF)

|
N
|

|
T
|

|
w
|

|
-
I

t1

anflte

[=NeoNoNoNoNeNaN 0

OCO0OO0OO0OO0OrO

[=leoNoNoNol loNo]

oo como

o= OO

oOo0ooo+rOOO

J—
[eNeN Nl © e

OCo0OOoOrOOOO

— I [
[Nl —_—o oo (en] o O
_

oOo+rHrOOOOO

HOOOOOOO

OHOOOOO0O

Table 1: List of quantum logic gates
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Multi qubit circuitof 4] gateEs EF Y wfof= tensor product-& AHEUTH o2 |¢1) T U=
Aoz 2@ AdYth

RGN

T 7l o14d9] qubitol] F Aol 2H-8-5h= gater= A2 @91 9] gate=2] tensor product® FHE] 2] o
Yk )} |8)7F AR (0)2 W Up8} |vo) 8 SAl02 BASH theat 24Ut

=

1000
I O 0100
Uz=0><0lc®1t+1><1|C®Xt:<0 X)Z D00
001 0

12) = 7(|00>+|11>)

A2} c@} t= control qubitd} target qubit-g =Tt

9 AA A Uy gater= Controlled X (&2 CX, CNOT) gategtil EH1t}t. Controlled U gate=
control qubit(Foz2 EHIYTH O Alefof et target qubit(gate YO 2 FAF U)o U gate
Ald) o] B7} AA El= multi-qubit gate YUt} ¢ o A]oll A= control qubitel |a)o] [1)Y of target
qubitQl |3)of] X gateZ} AlSiE Yt

[th2)+= Bell stategtil &M, T qubit?] tensor product® EHE 4= ¢li= entangled stateo]
HEAQ] AA Pt

3 |é0),|¢1) such that
[12) = ﬁ(\om +]11))
= |po) ® |¢1)

o] #0]= quantum gate52] B5-2 HH Table 15 ZZ3YA L.

Example 1)
N > 291 Noj g4, N 7J|¢] Bloch sphereZ N qubitg FEHE 4 ¢2-2 Degree of
freedoma &-g-5fo] dgsto]at.

Example 2)

2m—1
) ) = 0)2 7, 1) = > Ui W mofe
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2.4 Fermionic space to qubit space transformation

The wave function and hamiltonian can be represented in terms of fermionic operators. (The
creation and annihilation operator). Now let’s look at how these things are transformed in a
quantum computer. In this chapter, we will introduce how to efficiently encode the fermionic

operator on a quantum computer. [3]

2.4.1 The wave function in qubits

Before introducing the encoding method, we first see how a wave function can be represented in
qubits. By representing the wave function as an occupation number (ON) vector, we ensure

that qubits and orbitals have a one-to-one correspondence.

The ON vector is defined as follows.

1, if ¢, occupied

|k>:|k17k2a'~-7kM>ukp (21)

0, if ¢, unoccupied

The k, is the occupation number, which is 1 if the spin orbital is occupied by an electron and
0 otherwise. We can make each of these occupation numbers correspond to a qubit. If the spin

orbital is occupied, the state of a qubit is |1), and if it is unoccupied, |0),.

For example, if the wave function |¢1¢2) is represented by four qubits, it can be written as |1100).
And this corresponds to four qubits as |1), [1), |0}, |0).
2.4.2 The Jordan-Wigner encoding method

The Jordan-Wigner encoding is a method of transforming the fermionic operator into a linear

combination of Pauli operators that can be measured directly on a quantum computer. [4]

Fermions
{ai,a.} =0, {al,al} =0,{a;,a]} =5

Spins

loiy 03] = 0, [a ar] =10, [a',,a =46

e

@@‘@5

Gb \
p—— @@D
— Jordan-Wigner m o
— a3_®31105®(o' +1i67) € .
— 1 n [
J— - @lareer-i) O O
= @Ef/)
eiec = thq pﬂq 2 Z hpqrsapﬂ arag geiec = Ci ﬁx‘
pars i

Figure 5: The mapping from fermions to qubits

If we do not consider the anti-commutation relation, the fermionic operators acting on the j-th
qubit can be represented as follows: the creation operator changes the qubit state |0) into |1),

and the annihilation operator changes the qubit state |1) into |0). This action can be directly
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transformed as a Pauli operator.

0 0 X; —1Y;
AT 0] = _ J
a} = |1)(0l; L 0} 5
(2.2)
0 1 X, +1Y;
a; — |0)(1];, = =17

where X; and Y are Pauli operators acting on the j-th qubit.

However, these transformation cannot preserve an anti-commutation property of fermionic opera-
tors, because there is no sign change. To preserve that we add the Pauli string (linear combination
of the Pauli operator), Zo® --- ® Z;_1. Note that Zy ® - - - ® Z;_1 has an eigenvalue of +1 if there
are an even number of occupied orbitals up to the jth qubit, and -1 if it is odd. This represent the

sign scription of fermionic operators.

0) —{Z] 0) 10)

0 7] 0) )

o n n
(a) [001) — [001) (b) [001) — —[001) (c) [011) — |011)

Figure 6: Example of applying the Zy ® --- ® Z;_; operator

Finally, we have the following result.

. X: —1Y;
a}%%@ZoQ@”'@qu

X; +1Y; (2:3)
d] #@Z@@ ®ZJ—1

The Jordan-Wigner Encoding is a method that encodes locally for each orbital occupation. There
are other encoding methods as well, the parity method, which encodes based on the parity of the

orbitals, and the Bravy-Kitaev method, which encodes by considering both occupation and parity.

Example 3.2.1)
Suppose the fermionic operator is

1—|—aJ{a0

Using the Jordan-Wigner method, represent it as a linear combination of Pauli strings.

2.5 Common Facts about Quantum Computer

9] 9] unitary matrix7} Q12 of, 1712 Al 5H= multi-qubit gateE WFEA] BHE 4= Qlgo0] SHE
o]yt 19 HollA A A FE = AR unitary matrix calculatorghal 2 4 15Ut Adigh
o= ou}o] 1A AR s 2 Hmo] giu}tﬂ 2 A= (AE E oY) 88 agHe)a

okt 9l Urth Qubite] SR 20 ~ 307 AEolx,
gateg 9] Q2 FAS 4= gl QY. o] A HFEE Noisy Intermediate-Scale Quantum
computer(NISQ) 2}11 E& Uttt NISQO|A +d T 4= Q= A G| &2 Ads] AlgtE o] Q4
o} FAll 37 ©]/49] qubit-& entanglesti= A4 @ 2F7F Aol 2 qubit gateE 2] 2O 2 thA|sfjoF
5}a1, Circuit depth(multi qubit gate®] 7|45 dASUTH GA] YFE AXH 227} 2|4eF oz
ZIIRIER o] Aol folsto] WA YL ZE Ao Tk

041H B AFAE o A BAE

p s
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3 Quantum Phase Estimation(QPE)

Electronic structure theory involves the calculation of energy and configuration for a stationary
system. While full configuration interaction (full-CI) calculation is known for its highest accuracy,
it has been proven intractable for classical computers. Consequently, the primary challenge in this
field is to perform this calculation with lower computational costs.

Quantum phase estimation, which we will cover in this section, is the quantum algorithm
supposed by John von Neumann. QPE offers the advantage of computing eigenvalues with de-
sired precision (in terms of significant figures), thereby providing high computational accuracy.
Specifically, it enables us to calculate the eigenvalue of a Hamiltonian, allowing us to determine
the energy of a given system. However, implementing the QPE algorithm in NISQ devices poses
a challenge due to its significant circuit depth. As a result, the practical implementation of QPE

remains challenging at present.

Handout QFT

Handout QPE

Qiskit: Quantum Fourier Transform

Qiskit: Quantum Phase Estimation

Youtube: But what is a Fourier Transform? A visual introduction - 3B1B
Youtube: What is a Discrete Fourier Transform? - Grant Sanderson

Youtube: Fast Fourier Transform explained - Veritasium

3.1 Quantum Fourier Transformation(QFT)

QFT is the first algorithm you need to know to understand QPE. It’s a qubit-mapped illustration
of the Discrete Fourier transform. In that sense, learning about Discrete Fourier Transform
with supporting resources will be important to understand this chapter[5][6].

3.1.1 Theoretical Background

We can write Discrete Fourier Transform as follows:

| N-1 2m
’Dj*i e N UkEZUjkvk
N = k (3.1)
o =U7d
The equation denotes rotation of vector ¥ = (vg, v1,- - ,vn—1) to 7= (0o, U1, -+ ,0n—1) by operat-

ing unitary matrix transformation U. The same operation can also be performed by basis rotation
Z) to new basis §;, which is opposite-direction rotation to — . In this case, vector ¥ should be

fixed under basis rotation.

27ri

N— y
9 = %V Z = U (3.2)
k= k

Imagine the state |¢) consisting of n qubits. We can consider it as a normal vector belonging to

c2" space.
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https://learn.qiskit.org/course/ch-algorithms/quantum-fourier-transform
https://learn.qiskit.org/course/ch-algorithms/quantum-phase-estimation
https://youtu.be/spUNpyF58BY
https://youtu.be/g8RkArhtCc4?t=773
https://youtu.be/nmgFG7PUHfo
https://youtu.be/g8RkArhtCc4?t=773

Co
2" —1

w=| " =T ak (33)
. k=0

Con_1

By substituting |k) at (3.3) to &y at (3.2), rotated basis |j) corresponding to ¢/;(3.2) can be written
as follows(3.4):

N_1 2mi k
e N’ (let N =2™)
k=0
211
{i} eQTJ(T‘ tzo+2" Pzt Tn 1)

- %‘H

|zozy -+ Tp_1)

R

x07“'7x’ﬂ*1
{0,1} 271 2mi s
1 —jz0o ——J@2" i+ FzHn_1)
== ) e2 e [Z0) ® |21 -+ Tn—1)
\/? Tyt yTn—1
{01} 2mi o0y 2mi ., (34)
—J%o 1 i@ et 1)
= Z e 2 |x0 ® ﬁ Z e 2 ‘331 .. 'xn71>
1, Tn—1
2mi
= — e e 1" Tp—1
n—1 . .7
1

=R [UR T
2o | V2

3

See equation (3.4). We can find that if we substitute |0) ~ |2 — 1) in the place of the basis Zj, of
the Discrete Fourier Transform expression, the result will naturally be reduced to a tensor product
of n qubits.

3.1.2 Circuit

Figure 7 is a quantum circuit representation of the equation (3.4). Before describing the QFT

circuit, let’s first define the CR,, gate:

1 0 21
let n = ] = -
ot R (O 6227;LL> Z<2n)

0 0 o0 0 o
then CR, =10)(0],®; + 1) (1|, ® R, = =I.OR ( )
|0) (0], ® It + [1) (1], t o o0 1 o zznxt
0 0 0 e¥!

n (3.5), the CR,, gate appears to impose an Rz (2wx./2"™) transformation on the target qubit
only, without changing the control qubit (the two qubits are not independent; since x. is the state
of the control gate!).

QFT circuit can be illustrated as:
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I
I
|
I
1
I

[vo) 1) [2) |v3) |1ha) |vs)
Figure 7: Circuit of QFT

Let’s check the state in the middle of the circuit:

ltho) = Ixox1 -+ Xn-1) = |X) (3.6)
1) = {H[x0)} ® [x1-- Xn-1)
1 27
=7 {10+l . xna) (3.7)

) = 5 (Rz (G ) {0+ 0 m} ) o o)

(3.8
1 ni i
=7 {ly+ e E0 b @y xn) (3.9)
1 ) n— n—
|¢3> = ﬁ {|0> + 622" (on Lyxi2n 24 +Xn—120) |1>} ® |X1 o Xn—1>
1 2mi
=7 {10y +eFX 1)} @ o xa1) (3.10)

In this case, X = x02" 1 +x12" 2+ +x,,—12°. See |1)3); we can find that the first qubit becomes
a similar form to the last line of eq.(3.4).

1
o) = — {I0)+e

1
.,

1
L

Thus, one part of the circuit can convert a qubit to a Fourier basis.

i x |1>} o {‘0> N e%(X12n—2+x22n*3+-~+){n—120) |1>} X ‘Xg - Xn—1>

2

o X |1>} ® {‘0> + e (X—xi2"71) |1>} @2 xn-1)

|0) + e

0) +eFX 1)} {10) + e X )} @ P xa1) (3.11)

[4s) = QFT |X) = ;5 oy +e#X )} e {0+ X )} e o {j0) +% % 1)}
¢ {10) + 7= X 1)} (3.12)
m=0

Let’s compare equation(3.4) with equation(3.12). We can see that the two are the same equation,
except that the domain of the tensor product has been flipped from m + 1 to n - m (this can also
be equalized by adding swap gate to Figure 7’s |¢5)).

3.1.3 Explanation

The main point of QFT lies in the conversion between Z axis basis and the Fourier basis. The

Fourier basis is depicted on the equator of the Bloch sphere, guided by the intuition that the
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qubit 0 qubit 1 13 qubit 2 qubit 3

o}y o) 10} [0)
\ ¢ R \ 3
‘ > \\ A '\\
By Ly
XIS X X = X

b . Y v

(EY] 1) 1) 1)
qubit 0 qubit 1 1 qubit 2 qubit 3

10) |0} 10} 10)

1) 1) 1)

Figure 8: Z axis basis(up) and Fourier basis(down) of qubits

rotated phase angles return to their original positions with the periodicity of 27. Figure 8 is a
visualized example of qubit state |X) = |13). You can see the visualized material of the above
transformation in Chapter 2.1 of Qiskit Tutorial - Quantum Fourier Transform.

As discussed in Chapter 2.5, every quantum circuit represents a unitary operation, ensuring re-
versibility. Hence, the inverse Quantum Fourier Transform operation (Q]:TT) is also possible,
enabling the transformation of the Fourier basis to the Z-axis basis. The QF T operation holds
significant importance in Quantum Phase Estimation (QPE), which will be described later in this

section.

Example 4)
Calculate QFT5|5) on a 3 qubit circuit system.

Example 5)
Perform the QFT circuit by using Qiskit.

3.2 Quantum Phase Estimation

Quantum phase estimation(QPE) is a qunatum algorithm calculating the eigenvalue of the desired
operation. Inspired by the fact that QFT supports translation between the z-axis basis and the
Fourier basis, the objective is to map the eigenvalue to the Fourier basis and subsequently decode
it back to the Z-axis basis[7].

3.2.1 Theoretical Background

Lemma 1. The eigenvalue of unitary matrix U can always expressed in terms of e®.
proof. When |¢) is an eigenket of U,

Ulp) = cli)
W) = (VIUTU) = e (P|)

scfe=1,c=¢€"

For this reason, we call the eigenvalue ¢’s exponential part 6 as a phase in the context of a unitary

operator.
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https://learn.qiskit.org/course/ch-algorithms/quantum-fourier-transform#counting-fourier

3.2.2 Circuit and Explanation

Let’s define the following operations on the desired operator H (in the case of electronic structure

theory, the Hamiltonian of a given system) and its eigenket |¢;).

H|pi) = Ai |ds)
let Uy = '™ (3.13)
then, Ug |¢;) = €™ |¢)

CUy = 00l ® I, + [1)(1]. ® Usr

3.14
=I® (ei'rH)XC ( )

It’s similar to eq (3.5). However, note that the target qubit can also be a multi-qubit gate since H

is defined as a unitary operation of arbitrary size.

0) —{H ]+ l l
0) —{m] QfT*
[0) ———— cuy® [F—cu® | —ous® T |

o) ln) ) th3) tha)

Figure 9: Circuit of QPE, working

In the above circuit, C'U, Hk means that the CUpg gate has been implemented k times. In the
above circuit, the n measurement qubits have a control term added to them, and the state of each
measurement qubit determines whether the operation Uy is performed on the |1)) qubit as a target.
Let’s check the state in the middle of the circuit:

i) = 10}0) -+ 0}1%) (3.15)
) = (10) + [1)°" [4) (3.16)
) = jﬁnuw + 1) @ (10) + 2702 1)) o) (3.17)
i63) = jé (100 + e 1)) @@ (10) + 202 1)) @ (Jo) + €202 1)) 1) (3.18)
= 3 e (3.19)
=0
2" —1
v) = QFT | = % e2“”|x>] 9 (320)
- = 3 emQrr i) v (3.21)
1 236":701 o=
_ 627ri$97 e~ 22’7? yx )

Thus, the final state will be:
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ly) @ |¢) (3.23)

1 om_1 Man_1
_ _27;7:( _Qne)m
[¥5) = 5 > [ > el

y=0 z=0

The state is expressed with the qubit basis |y), which is the Z-axis basis obtained by inverse QFT.
Now, we can define an error § with condition 2"0 = a + 2™J, where a is a closest integer to 2™6.

Hence, with error term, equation (3.23) can be rewritten as:

2" —1 2" -1 2" —1
1 _2mi(y_a)z 2miss
w3 |5 et e = S ame o2
y=0 =0 y=0

Finally, we can measure the value in the form of probability. The probability of finding |y) = |a) is

2
Pr(a) = [{aly)| (3.25)
| 212l 2
—2mi (y—qa)x 27widx
o 3 ey 520
y=0 x=0
2" —1 2

(3.27)

1 .
2771 Z 627715:5
z=0

When 6=0 in equation (3.27), you can easily see that Pr(a)=1.

3.3 Improving QPE with iteration

Iterative quantum phase estimation (IQPE) is an algorithm designed to complement the accuracy
problem of QPE. IQPE has the advantage of being unconstrained by the number of qubits. Even
with a limited qubit number, you can achieve any desired level of accuracy by increasing the number

of trials. Ultimately, the algorithm can provide the exact solution of the desired eigenvalue.

3.3.1 Theoretical Background

In the section of QPE, we already remarked that an eigenvector of the arbitrary unitary operator
U can be illustrated as U|y)) = ¢ = €2™¢. Because of the periodicity, the range should be limited
to 0 < ¢ < 1. Now we can define a new operator for IQPE,

Vk — [6—27ri¢k,1 Vk—l}Q

when Vp = U. We will see how this operator can be applied to phase estimation.
At the first trial for k=0, let’s assume a condition 2"¢ > 2"¢q so that 2" ¢y becomes a lower bound

integer for the true value ¢. Now we get the relation

@ > ¢

At the second trial for k=1, let us operate V; to |1} to get an eigenvalue. Then we get Vﬂi/}) =
[e=2m1P0 ]2 |¢)) = (@ =%0)2|¢)). Same as we did in the first trial, we can also take a lower bound

value ¢; to the phase of V;. By rearranging the formula (¢ — ¢g) - 2 > ¢1,
1
¢ = ¢o+ 501
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This can be carried out iteratively, taking only the lower bound ¢ value for each operation and
applying it to the formula below. The more the number of trials k increases, the closer the right

side value is to the true value ¢.

1 1 1
»>¢o+ §¢1 + 27¢>2 + .+ 27k¢k (3.28)

3.3.2 Circuit

Figure 10 is a quantum circuit of iterative QPE. The overall structure seems similar to the QPE
circuit, however, the controlled-U gate is replaced with a controlled-V, gate.

IQPE repeats the whole circuit while incrementing the value of trial k from 0 to desired value. We
will obtain the proper eigenvalue ¢, during each trial k and successively add it to the lower bound.
As shown in Equation (3.28), the lower bound increases as the number of trials increases, leading

to a value closer to the true value.

|0) @ QFTT
02—

m S0 oot n—1
|w> / Vk2 Vk2 . Vk2

D

Figure 10: Circuit of iterative QPE, where V;, = [6_27Ti¢’“’1‘7k,1]2.
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4 Variational Quantum Eignensolver(VQE)

According to the variational principle, for arbitrary trial function, the following equation is true.

(Y| H [¢) > Eo (4.1)

If we can make an exact function by making appropriate changes to the trial function, we can
obtain the ground energy of the molecular system. Therefore, if you can set the appropriate vari-
ation, it means that you can apply the variational method effectively. It was confirmed that the
variation can be implemented using various gates in quantum algorithms(called ansatz), and based
on this, a quantum algorithm that approximates the ground state called variational quantum eigen-
solver(VQE) was studied. 3]

VQE is divided into 4 major procedure, setting initial state, changing initial state to trial state,
measuring and optimizing. First, we set ground state as initial state, then, we set a trial function
by operating the given ansatz which depends on a parameter € in the initial state. It computes
the expectation value of a physical quantity from measurement process. Then, through a clas-
sical optimization process, it reduces the expectation value to the minimum value by updating
the parameter(ansatz) and trial function and by iterating the measurement. We are focus on an

explanation about overall procedure excepted for optimization.

(1) Second Quantized (1) Encoding of fermionic
Hamiltoni p i p s to Pauli

(ijlkl) atat;a,a; ‘ atyay = z B,
Q-Chem CH++

I
! ! 1

(2) (2) Ansatz and state Preparation 3)
Initialization (e.g. UCCSD) Measurement

e

: u@©) = [ [er@-r@*
0>
o>
Qiskit Qiskit Qiskit
(2) Optimizing
6'; =6 -aa(ﬂ(e))
Jj J aaj

scipy.optimizers

Figure 11: VQE overall scheme

4.1 Initialization

We need to represent the electronic wavefunction in terms of qubits to calculate the ground state
energy for the molecule of interest. The important points are to figure out the number of orbitals
and the number of electrons in the molecular system, and to choose a wavefunction than can well
describe the ground state. Therefore, in generally, Hartree-Fock ground state is chosen as an initial
state. (1.10) In the case of an inappropriate initial state(if not satisfy the above two conditions), it
will converge to an incorrect result, so setting the initial state properly is the first thing to consider
in VQE.
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Let’s understand the initialization process through Hs molecule example. The molecule has a
system of 4 orbitals and 2 electrons.(2 occupied, 2 unoccupied) So we have to set the initial state
to two |1) (occupied) and two |0) (unoccupied). (2.1) From the four qubits set to |0), the initial state
is set by operating X gates on the first and second qubits.

0 n

0 n

i i
)

Figure 12: setting initial state of Hy molecule

4.2 Ansatz

Ansatz selection is important part of eigensolver and the main purpose of this is to change a given
initial state into a trial function. It mixes from the initial state to the superposed state using
various gates such as control gate and rotation gate. Although the characteristic of ansatz may
vary depending on the purpose of calculation, two things should be basically satisfied. It should
be possible to describe all state of interest and also make the trial state converge to exact state.
A typical example is UCC ansatz, which can conveniently express the excited state of electrons.
However, since the number of iteration required for convergence increases if the expressibility is

high, it is important to choose an appropriate ansatz between expression and training.

[y =U(0) [Yur) (4.2)

4.2.1 UCC Ansatz

We introduced UCC as an ansatz which can parameterize conveniently the excited electron state.
When these are single-electron excitations and double electron excitations, resulting in UCC Sin-
gle and Double(UCCSD), also can be extended to high order. Thanks to its unitary through the

exponential of an anti-Hermitian operator, it can be implemented as a quantum algorithm. (1.33)

Let’s learn how it is constructed on the circuit by following the process below using UCCSD
ansatz as an example. It is a central part of the UCCSD ansatz to encode the fermion operator
into Pauli words, the tensor product of the Pauli matrices. This is exactly same as the encoding

process learned above.

From 1.34, 2.3, UCCSD ansatz can be represented by Pauli matrix using JW encoding.

U = eXp(Z 0" (ala, — ala,) + Z 0" (alalapa, — aLaZasar))

a,b,r,s

= exp(}_ 0;45) (4.3)

=exp() ic;P))(P=p1®@p2 @+ @pn,p € {1, X,Y, Z})
J

The next step, called Trotterization, is the process of approximating the exponentialized Pauli
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word to a product form. The approximation is needed because it is not ensured that eAT5 = e4ef
when A, B is matrix. We convert the UCC ansatz into a series of parameterized quantum gates

which can directly be implemented on a quantum computer.

exp() ic; Pj) ~ H(ei%%)” (4.4)

J J
Then, rewrite exponentialized matrix. It is defined by expansion of Taylor series.
1
e :A0+A1+§A2+... (4.5)

iZ6

Using this equation, we can represent e*?? and ¢*42? to matrix form, the result is below. We know

that e*4? is rotation operator which rotate by # phase around the Z axis.

0
ize _ [ © 0 _
€ = < 0 61_9) = Rz(a)

(4.6)

| .|

Figure 13: Ladder implement(left) and Star implement (right) of e?#%4%1¢

Then how should we express the X and Y operators? We have dealt with a similar problem in
the previous measurement section. It needs to transform the basis of X and Y operator to the basis
of Z operator. It can be performed by placing H and S gates on the circuit. The X and Y operator
are transformed to the Z operator through the H gate and S, H gate, respectively. (2.3)

eX=H.-¢? . H
eV ={HS}T. % . HST

5]

7} Y R0} )

Figure 14: Ladder implement(left) and Star implement(right) of e?¥ #X1?
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4.3 Measurement

The Hamiltonian can be represented with linear combination of Pauli words using Jordan-Wigner
Encoding method. We can express the expectation value of the Hamiltonian by finding the expec-
tation value of the Pauli words. It is defined as a linear combination as shown the equation below.
(1.25, 2.3)

Helec:ZCiPi(P:pl ®p2®"'®pn7p€ {IavaaZ})

; (4.8)
<Helec> = Zci <P’L> = Zci <1/)|P1|1/}>

As mentioned in chapter 1.3 (2.3), the probability is expressed by the coefficient of the statevector.
However, since we cannot track each statevector in real, we have to be obtain the probability by
measuring each qubits. The process of capturing a single state is called a shot, and the probability

of each state is obtained through enough N times of shot.

4.3.1 (Z) Measurement

Among the Pauli matrices, the measurement of the Z operator can be expressed as the difference
between the probabilities of |0) and |1) state because the matrices are diagonal. Additionally, the
expectation value of I operator must be 1. It means that I operator is independent to measurement

process. 2.3
1 0 Co
(2) = Wizl = (¢ ) ( ) ( ) = cjeg = cier = P (10)) = P (1)

= Gl = () (1 0) (CO)=cscO+c;c1=P<|0>>+P<|1>>=1

0 1 1
oo (4.9)
1 0 1 0 Co1
ZZ) = (|ZZ|Y) = (¢t ¢y &y ®
(2Z) = (| ZZ]) (Coo €1 1o 611) (O _1> <0 _1> c10
C11

= Co0C00 — o101 — CoC10 + chrc11 = P (|00)) — P (|01)) — P ([10)) + P (|11))

Assume the following two examples.
1. a total of 2048 shots, 0 state is 1023 and 1 state is 1025.

1023 1025
P(0) = 300 P(11) = 5o

(2) = P(10) ~ P(I1)) = ~ 5
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2. a total of 2048 shots, 00 state is 255, 01 state is 769, 10 state is 767 and 11 state is
257.

A
\
—
17
P00 = 2 p oty = 2% p oy = I p ) - 2T
(2Z) =P (|00)) — P (|01)) — P (]10)) + P (|11)) = _%

However, it needs to transform the basis of X and Y operator to the basis of Z operator for
measurement of X and Y operator, since the probabilities can not express expectation value by

simply summation. (2.3)

(ZIXY) = (W|ZIXY |0) = (/| 2122]4) (4.10)
| |
‘ —1A
—{] | A
—st—{H}— =

Figure 15: ZIXY measure

We deal with a method to calculate the expectation value of 4 Pauli operators. Based on this, we
can reconstruct the expectation value of complex Pauli matrices constituting the Hamiltonian as

an equation of probabilities.

4.3.2 Grouping

In a real quantum computer system, since the measurement cost is proportional to the number of
measurements, methods to reduce it through post processing are proposed. One of them is grouping.
Some of numerous Pauli words have the same circuit diagram. Since this depends on the X and Y
operators, it is satisfy when the order of X and Y operators in Pauli words is same. The expectation
value of Pauli words belonging to a group is expressed as a combination of probabilities obtained

through the same measurement. For example, 1ZX1, ZIXY, ZZXI, ZIIY are belong to [ZZXY]
group.

A

>

BN

I
I
I
f
I
|
I
|
I

Figure 16: ZZXY group
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4.4 Optimization

@

Initialization Ansatz Measurement

Figure 17: VQE scheme

Review the above overall VQE Scheme. We obtained the Hamiltonian energy of trial state through
the 3 procedures. However, it is not minimum energy we want, so it needs to optimize trial state
to exact state. This is same as determining the i + 1 th parameter(§(+1)) of ansatz with i th (6())
and the result, and iteratively performed until the Hamiltonian energy converges to the minimum.
There are two major categories of optimization, gradient-based optimizers and gradient-free opti-
mizers.[8] Gradient based optimizers require evaluation of gradient for optimization, and examples
include Gradient Descent (GD), Broyden-Fletcher-Goldfard-Shanno (BFGS) and Simultaneous
Perturbation Stochastic Approximation (SPSA). The opposite is called a gradient-free optimizer,
and representative Constrained Optimization BY Linear Approximation (COBYLA) and POW-
ELL exist. In fact, optimization is a field outside of our interest, so there will be no big problem

even if we just check the above.
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5 Homebuilt VQE manual

We prepared a full VQE code on a Google colab™. ipynb file you can run through.

5.1 Instruction_Colab

First, you should clone the contents in Y.K.Ahn‘s Google drive directory. Download the full
contents at Google Drive File and upload the whole contents to your own Google Drive. Run

tutorial.ipynb and f= ollow the instruction.

5.2 Instruction_Local
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https://drive.google.com/drive/folders/1fLeBDAu9PaKRq-HsJnG43RT5qa6vXiZM?usp=share_link
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