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1. Introduction

One of the principal tools in the theoretical study of biological molecules is the method of molecular dynamics simulations (MD). This computational method calculates the time dependent behavior of a molecular system.  MD simulations have provided detailed information on the fluctuations and conformational changes of proteins and nucleic acids.   These methods are now routinely used to investigate the structure, dynamics and thermodynamics of biological molecules and their complexes. They are also used in the determination of structures from x-ray crystallography and from NMR experiments.
	Biological molecules exhibit a wide range of time scales over which specific processes occur; for example 

· Local Motions (0.01 to 5 Å, 10-15 to 10-1 s) 

· Atomic fluctuations 

· Sidechain Motions 

· Loop Motions 

· Rigid Body Motions (1 to 10 Å, 10-9 to 1 s) 

· Helix Motions 

· Domain Motions (hinge bending) 

· Subunit motions 

· Large-Scale Motions (> 5 Å, 10-7 to 104 s) 

· Helix coil transitions 

· Dissociation/Association 

· Folding and Unfolding 


The goal of this course is to provide an overview of the theoretical foundations of classical molecular dynamics simulations, to discuss some practical aspects of the method and to provide several specific applications within the framework of the CHARMM program. Although the applications will be presented in the framework of the CHARMM program, the concepts are general and applied by a number of different molecular dynamics simulation programs. The CHARMM program is a research program developed at Harvard University for the energy minimization and dynamics simulation of proteins, nucleic acids and lipids in vacuum, solution or crystal environments (Harvard CHARMM Web Page http://yuri.harvard.edu/).
Section I of this course will focus on the fundamental theory followed by a brief discussion of classical mechanics.  In section II, the potential energy function and some related topics will be presented. Section III will discuss some practical aspects of molecular dynamics simulations and some basic analysis. The remaining sections will present the CHARMM program and provide some tutorials to introduce the user to the program. This course will concentrate on the classical simulation methods (i.e., the most common) that have contributed significantly to our understanding of biological systems. 
	Molecular dynamics simulations permit the study of complex, dynamic processes that occur in biological systems. These include, for example, 

· Protein stability 

· Conformational changes 

· Protein folding 

· Molecular recognition: proteins, DNA, membranes, complexes 

· Ion transport in biological systems 

and provide the mean to carry out the following studies,

· Drug Design 

· Structure determination: X-ray and NMR 


2. Historical Background

The molecular dynamics method was first introduced by Alder and Wainwright in the late 1950’s (Alder and Wainwright, 1957, 1959) to study the interactions of hard spheres. Many important insights concerning the behavior of simple liquids emerged from their studies. The next major advance was in 1964, when Rahman carried out the first simulation using a realistic potential for liquid argon (Rahman, 1964). The first molecular dynamics simulation of a realistic system was done by Rahman and Stillinger in their simulation of liquid water in 1974 (Stillinger and Rahman, 1974). The first protein simulations appeared in 1977 with the simulation of the bovine pancreatic trypsin inhibitor (BPTI) (McCammon et al, 1977). Today in the literature, one routinely finds molecular dynamics simulations of solvated proteins, protein-DNA complexes as well as lipid systems addressing a variety of issues including the thermodynamics of ligand binding and the folding of small proteins. The number of simulation techniques has greatly expanded; there exist now many specialized techniques for particular problems, including mixed quantum mechanical – classical simulations, that are being employed to study enzymatic reactions in the context of the full protein. Molecular dynamics simulation techniques are widely used in experimental procedures such as X-ray crystallography and NMR structure determination.
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3. Statistical Mechanics

Molecular dynamics simulations generate information at the microscopic level, including atomic positions and velocities. The conversion of this microscopic information to macroscopic observables such as pressure, energy, heat capacities, etc. requires statistical mechanics. Statistical mechanics is fundamental to the study of biological systems by molecular dynamics simulation. In this section, we provide a brief overview of some main topics. For more detailed information, refer to the numerous excellent books available on the subject.

Introduction to Statistical Mechanics:

In a molecular dynamics simulation, one often wishes to explore the macroscopic properties of a system through microscopic simulations, for example, to calculate changes in the binding free energy of a particular drug candidate, or to examine the energetics and mechanisms of conformational change. The connection between microscopic simulations and macroscopic properties is made via statistical mechanics which provides the rigorous mathematical expressions that relate macroscopic properties to the distribution and motion of the atoms and molecules of the N-body system; molecular dynamics simulations provide the means to solve the equation of motion of the particles and evaluate these mathematical formulas. With molecular dynamics simulations, one can study both thermodynamic properties and/or time dependent (kinetic) phenomenon.
	Reference Textbooks on Statistical Mechanics 

D. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976)

D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987)

R. E. Wilde and S. Singh, Statistical Mechanics, Fundamentals and Modern Applications (John Wiley & Sons, Inc, New York, 1998) 


  

 Statistical mechanics is the branch of physical sciences that studies macroscopic systems from a molecular point of view. The goal is to understand and to predict macroscopic phenomena from the properties of individual molecules making up the system. The system could range from a collection of solvent molecules to a solvated protein-DNA complex. In order to connect the macroscopic system to the microscopic system, time independent statistical averages are often introduced. We start this discussion by introducing a few definitions.

Definitions

The thermodynamic state of a system is usually defined by a small set of parameters, for example, the temperature, T, the pressure, P, and the number of particles, N. Other thermodynamic properties may be derived from the equations of state and other fundamental thermodynamic equations.
The mechanical or microscopic state of a system is defined by the atomic positions, q, and momenta, p; these can also be considered as coordinates in a multidimensional space called phase space. For a system of N particles, this space has 6N dimensions. A single point in phase space, denoted by , describes the state of the system. An ensemble is a collection of points in phase space satisfying the conditions of a particular thermodynamic state. A molecular dynamics simulations generates a sequence of points in phase space as a function of time; these points belong to the same ensemble, and they correspond to the different conformations of the system and their respective momenta. Several different ensembles are described below.

An ensemble is a collection of all possible systems which have different microscopic states but have an identical macroscopic or thermodynamic state. There exist different ensembles with different characteristics.

	· Microcanonical ensemble (NVE) : The thermodynamic state characterized by a fixed number of atoms, N, a fixed volume, V, and a fixed energy, E. This corresponds to an isolated system. 

· Canonical ensemble (NVT): This is a collection of all systems whose thermodynamic state is characterized by a fixed number of atoms, N, a fixed volume, V, and a fixed temperature, T. 

· Isobaric-isothermal ensemble (NPT): This ensemble is characterized by a fixed number of atoms, N, a fixed pressure, P, and a fixed temperature, T. 

· Grand canonical ensemble (VT): The thermodynamic state for this ensemble is characterized by a fixed chemical potential, , a fixed volume, V, and a fixed temperature, T. 


Calculating Averages from a Molecular Dynamics Simulation

An experiment is usually made on a macroscopic sample that contains an ex-tremely large number of atoms or molecules sampling an enormous number of conformations. In statistical mechanics, averages corresponding to experimental observables are defined in terms of ensemble averages; one justification for this is that there has been good agreement with experiment. An ensemble average is average taken over a large number of replicas of the system considered simul-taneously. 

In statistical mechanics, average values are defined as ensemble averages. The ensemble average is given by
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is the observable of interest and is expressed as a function of the momenta p, and the positions r, of the system. The integration is over all possible variables of r and p. The probability density of the ensemble is given by
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where H is the Hamiltonian, T is the temperature, kB is Boltzmann’s constant and Q is the partition function
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This integral is generally extremely difficult to calculate because one must calculate all possible states of the system. In a molecular dynamics simulation, the points in the ensemble are calculated sequentially in time, so to calculate an ensemble average, the molecular dynamics simulations must pass through all possible states corresponding to the particular thermodynamic constraints.
Another way, as done in an MD simulation, is to determine a time average of A, which is expressed as
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where  is the simulation time, M is the number of time steps in the simulation and A(pN,rN) is the instantaneous value of A.
The dilemma appears to be that one can calculate time averages by molecular dynamics simulation, but the experimental observables are assumed to be ensemble averages. Resolving this leads us to one of the most fundamental axioms of statistical mechanics, the ergodic hypothesis, which states that the time average equals the ensemble average.
	The Ergodic hypothesis states 
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Ensemble average = Time average


The basic idea is that if one allows the system to evolve in time indefinitely, that system will eventually pass through all possible states. One goal, therefore, of a molecular dynamics simulation is to generate enough representative conformations such that this equality is satisfied. If this is the case, experimentally relevant information concerning structural, dynamic and thermodynamic properties may then be calculated using a feasible amount of computer resources. Because the simulations are of fixed duration, one must be certain to sample a sufficient amount of phase space.

Some examples of time averages:

Average potential energy
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where M is the number of configurations in the molecular dynamics trajectory and Vi is the potential energy of each configuration.
Average kinetic energy
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where M is the number of configurations in the simulation, N is the number of atoms in the system, mi is the mass of the particle i and vi is the velocity of particle i.
A molecular dynamics simulation must be sufficiently long so that enough representative conformations have been sampled.

  

4. Classical Mechanics

The molecular dynamics simulation method is based on Newton’s second law or the equation of motion, 
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, where F is the force exerted on the particle, m is its mass and a is its acceleration. From knowledge of the force on each atom, it is possible to determine the acceleration of each atom in the system. Integration of the equations of motion then yields a trajectory that describes the positions, velocities, and accelerations of the particles as they vary with time. From this trajectory, the average values of properties can be determined. The method is deterministic; once the positions and velocities of each atom are known, the state of the system can be predicted at any time in the future or the past. Molecular dynamics simulations can be time consuming and computationally expensive. However, computers are getting faster and cheaper. Simulations of solvated proteins are calculated up to the nanosecond time scale; however, simulations into the millisecond regime have been reported.

Newton’s equation of motion is given by
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where Fi is the force exerted on particle i, mi is the mass of particle i and ai is the acceleration of particle i. The force can also be expressed as the gradient of the potential energy,

[image: image12.wmf]ii

FV

=-Ñ


Combining these two equations yields
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where V is the potential energy of the system. Newton’s equation of motion can then relate the derivative of the potential energy to the changes in position as a function of time.
 

Newton’s Second Law of motion: a simple application
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Taking the simple case where the acceleration is constant,
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we obtain an expression for the velocity after integration
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and since
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we can once again integrate to obtain
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Combining this equation with the expression for the velocity, we obtain the following relation which gives the value of x at time t as a function of the acceleration, a, the initial position, x0, and the initial velocity, v0.
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The acceleration is given as the derivative of the potential energy with respect to the position, r,
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Therefore, to calculate a trajectory, one only needs the initial positions of the atoms, an initial distribution of velocities and the acceleration, which is determined by the gradient of the potential energy function. The equations of motion are deterministic, e.g., the positions and the velocities at time zero determine the positions and velocities at all other times, t. The initial positions can be obtained from experimental structures, such as the x-ray crystal structure of the protein or the solution structure determined by NMR spectroscopy.

The initial distribution of velocities are usually determined from a random distribution with the magnitudes conforming to the required temperature and corrected so there is no overall momentum, i.e.,
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The velocities, vi, are often chosen randomly from a Maxwell-Boltzmann or Gaussian distribution at a given temperature, which gives the probability that an atom i has a velocity vx in the x direction at a temperature T.
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The temperature can be calculated from the velocities using the relation
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where N is the number of atoms in the system.

 

Integration Algorithms

The potential energy is a function of the atomic positions (3N) of all the atoms in the system. Due to the complicated nature of this function, there is no analytical solution to the equations of motion; they must be solved numerically. Numerous numerical algorithms have been developed for integrating the equations of motion. We list several here.

· Verlet algorithm 
· Leap-frog algorithm 
· Velocity Verlet 
· Beeman’s algorithm 
Important: In choosing which algorithm to use, one should consider the following criteria:

· The algorithm should conserve energy and momentum. 

· It should be computationally efficient.
· It should permit a long time step for integration. 

All the integration algorithms assume the positions, velocities and accelerations can be approximated by a Taylor series expansion:
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where r is the position, v is the velocity (the first derivative with respect to time), a is the acceleration (the second derivative with respect to time), etc.

The Verlet algorithm

To derive the Verlet algorithm one can write
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Summing these two equations, one obtains
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The Verlet algorithm uses positions and accelerations at time t and the positions from time t-t to calculate new positions at time t+t. The Verlet algorithm uses no explicit velocities. The advantages of the Verlet algorithm are, i) it is straightforward, and ii) the storage requirements are modest. The disadvantage is that the algorithm is of moderate precision.
The leap-frog algorithm
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In this algorithm, the velocities are first calculated at time t+1/2t; these are used to calculate the positions, r, at time t+t. In this way, the velocities leap over the positions, then the positions leap over the velocities. The advantage of this algorithm is that the velocities are explicitly calculated, however, the disadvantage is that they are not calculated at the same time as the positions. The velocities at time t can be approximated by the relationship:
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The Velocity Verlet algorithm

This algorithm yields positions, velocities and accelerations at time t. There is no compromise on precision.
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Beeman’s algorithm

This algorithm is closely related to the Verlet algorithm
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The advantage of this algorithm is that it provides a more accurate expression for the velocities and better energy conservation. The disadvantage is that the more complex expressions make the calculation more expensive.  

II. POTENTIAL ENERGY FUNCTIONS
Theoretical studies of biological molecules permit the study of the relationships between structure, function and dynamics at the atomic level. Since many of the problems that one would like to address in biological systems involve many atoms, it is not yet feasible to treat these systems using quantum mechanics. However, the problems become much more tractable when turning to empirical potential energy functions, which are much less computationally demanding than quantum mechanics. But this comes at a cost: numerous approximations are introduced which lead to certain limitations. These are discussed below. 

Current generation force fields (or potential energy functions) provide a reasonably good compromise between accuracy and computational efficiency. They are often calibrated to experimental results and quantum mechanical calculations of small model compounds. Their ability to reproduce physical properties measurable by experiment is tested; these properties include structural data obtained from x-ray crystallography and NMR, dynamic data obtained from spectroscopy and inelastic neutron scattering and thermodynamic data. The development of parameter sets is a very laborious task, requiring extensive optimization. This is an area of continuing research and many groups have been working over the past two decades to derive functional forms and parameters for potential energy functions of general applicability to biological molecules. Among the most commonly used potential energy functions are the AMBER, CHARMM, GROMOS and OPLS/AMBER force fields. The continuing development of force fields remains an intense area of research with implications for both fundamental research as well as for applied research in the pharmaceutical industry.

As mentioned above, there are certain limitations of empirical force fields. One of the most important is that no drastic changes in electronic structure are allowed, i.e., no events like bond making or breaking can be modeled. To address this limitation, mixed quantum mechanical - molecular mechanical force fields are under development in a number of laboratories. We will not cover these force fields in the current manual.

Complete potential functions are now available for macromolecular simulations; one particular example is the CHARMM22 all atom potential function for proteins (MacKerell et al. 1998), nucleic acids (MacKerell et al. 1995), lipids (Schlenkrich et al. 1996) and carbohydrates (Ha et al. 1988).
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The CHARMM potential energy function

The energy, E, is a function of the atomic positions, R, of all the atoms in the system, these are usually expressed in term of Cartesian coordinates. The value of the energy is calculated as a sum of internal, or bonded, terms Ebonded, which describe the bonds, angles and bond rotations in a molecule, and a sum of external or nonbonded terms, Enon-bonded, These terms account for interactions between nonbonded atoms or atoms separated by 3 or more covalent bonds.
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The Ebonded term is a sum of three terms:
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which correspond to three types of atom movement:

[image: image33]
The first term in the above equation is a harmonic potential representing the interaction between atomic pairs where atoms are separated by one covalent bond, i.e., 1,2-pairs. This is the approximation to the energy of a bond as a function of displacement from the ideal bond length, b0. The force constant, Kb, determines the strength of the bond. Both ideal bond lengths b0 and force constants Kb are specific for each pair of bound atoms, i.e. depend on chemical type of atoms-constituents.
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[image: image35]
Values of force constant are often evaluated from experimental data such as infrared stretching frequencies or from quantum mechanical calculations. Values of bond length can be inferred from high resolution crystal structures or microwave spectroscopy data.

The second term in above equation is associated with alteration of bond angles theta from ideal values 0, which is also represented by a harmonic potential. Values of 0 and K depend on chemical type of atoms constituting the angle. These two terms describe the deviation from an ideal geometry; effectively, they are penalty functions and that in a perfectly optimized structure, the sum of them should be close to zero.
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[image: image37]
The third term represents the torsion angle potential function which models the presence of steric barriers between atoms separated by 3 covalent bonds (1,4-pairs). The motion associated with this term is a rotation, described by a dihedral angle and coefficient of symmetry n=1,2,3,… around the middle bond. This potential is assumed to be periodic and is often expressed as a cosine function. 

In addition to these term, the CHARMM force field has two additional terms; one is the Urey-Bradley term, which is an interaction based on the distance between atoms separated by two bonds (1,3-interaction). The second additional term is the improper dihedral term (see the section on CHARMM) which is used to maintain chirality and planarity.
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[image: image39]
The parameters for the these terms, Kb, Kq, Kf, are obtained from studies of small model compounds and comparisons to the geometry and vibrational spectra in the gas phase (IR and Raman spectroscopy), supplemented with ab initio quantum calculations.
The energy term representing the contribution of non-bonded interactions in the CHARMM potential function has two components, the van der Waals interaction energy and the electrostatic interaction energy. Some other potential functions also include an additional term to account for hydrogen bonds. In the CHARMM potential energy function, these interactions are accounted for by the eleedctrostatic and van der Waals interactions.
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The van der Waals interaction between two atoms arises from a balance between repulsive and attractive forces. The repulsive force arises at short distances where the electron-electron interaction is strong. The attractive force, also referred to as the dispersion force, arises from fluctuations in the charge distribution in the electron clouds. The fluctuation in the electron distribution on one atom or molecules gives rise to an instantaneous dipole which, in turn, induces a dipole in a second atom or molecule giving rise to an attractive interaction. Each of these two effects is equal to zero at infinite atomic separation r and become significant as the distance decreases. The attractive interaction is longer range than the repulsion but as the distance become short, the replusive interaction becomes dominant. This gives rise to a minimum in the energy. Positioning of the atoms at the optimal distances stabilizes the system. Both value of energy at the minimum E* and the optimal separation of atoms r* (which is roughly equal to the sum of van der Waals radii of the atoms) depend on chemical type of these atoms.
[image: image41]
The van der Waals interaction is most often modeled using the Lennard-Jones 6-12 potential which expresses the interaction energy using the atom-type dependent constants A and C. Values of A and C may be determined by a variety of methods, like non-bonding distances in crystals and gas-phase scattering measurements
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The van der Waals interactions are one of the most important for the stability of the biological macromolecules.

The electrostatic interaction between a pair of atoms is represented by Coulomb potential; D is the effective dielectric function for the medium and r is the distance between two atoms having charges qi and qk.
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The empirical potential energy function is differentiable with respect to the atomic coordinates; this gives the value and the direction of the force acting on an atom and thus it can be used in a molecular dynamics simulation.

The empirical potential function has several limitations, which result in inaccuracies in the calculated potential energy.

One limitation is due to the fixed set of atom types employed when determining the parameters for the force field. Atom types are used to define an atom in a particular bonding situation, for example an aliphatic carbon atom in an sp3 bonding situation has different properties than a carbon atom found in the His ring. Instead of presenting each atom in the molecule as a unique one described by unique set of parameters, there is a certain amount of grouping in order minimize the number of atom types. This can lead to type-specific errors. The properties of certain atoms, like aliphatic carbon or hydrogen atoms, are less sensitive to their surroundings and a single set of parameters may work quite well, while other atoms like oxygen and nitrogen are much more influenced by their neighboring atoms. These atoms require more types and parameters to account for the different bonding environments.

An approximation introduced to decrease the computational demand is the pair-wise additive approximation, i.e., interaction energy between one atom and the rest of the system is calculated as a sum of pair-wise (on atom to one atom) interactions, or as if the pair of atoms do not see the other atoms in the system. The simultaneous interaction between three or more atoms is not calculated, so certain polarization effects are not explicitly included in the force field. This can lead to subtle differences between calculated and experimental results, for example, in the calculation of experimentally observable pK shifts of ionizable amino acid residue side chains induced by electrostatic field of the whole protein .

Another important point to take into consideration is that the potential energy function does not include entropic effects. Thus, a minimum value of E calculated as a sum of potential functions does not necessarily correspond to the equilibrium, or the most probable state; this corresponds to the minimum of free energy. Because of the fact that experiments are generally carried out under isothermal-isobaric conditions (constant pressure, constant system size and constant temperature) the equilibrium state corresponds to the minimum of Gibb's Free Energy, G. While just an energy calculation ignores entropic effects, these are included in a molecular dynamics simulations
Treatment of the nonbonded energy terms

The most time consuming part of a molecular dynamics simulation is the calculation of the nonbonded terms in the potential energy function, e.g., the electrostatic and van der Waals forces.
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In principle, the non-bonded energy terms between every pair of atoms should be evaluated; in this case, the number of increases as the square of the number of atoms for a pairwise model (N2). To speed up the computation, the interactions between two atoms separated by a distance greater than a pre-defined distance, the cutoff distance, are ignored. Several different ways to terminate the interaction between two atoms have been developed over the years; some work better than others.






[clic on the figure to see a larger version]

Truncation: the interactions are simply set to zero for interatomic distances greater than the cutoff distance. This method can lead to large fluctuations in the energy. This method is not often used.
The SHIFT cutoff method: this method modifies the entire potential energy surface such that at the cutoff distance the interaction potential is zero. The drawback of this method is that equilibrium distances are slightly decreased.
The SWITCH cutoff method: This method tapers the interaction potential over a predefined range of distances. The potential takes its usual value up to the first cutoff and is then switched to zero between the first and last cutoff. This model suffers from strong forces in the switching region which can slightly perturb the equilibrium structure. The SWITCH function is not recommended when using short cutoff regions.


Long range electrostatic interactions

A number of experimental studies have demonstrated the importance of long range electrostatic interactions in biological molecules. For example, Fersht and co-workers have studied long range protein - H+ interactions by detailing the relationship between surface charges of the serine protease subtilisin and the pKa of the active site residue His-64 (Thomas, Russel et al. 1985; Russell and Fersht 1987). Other experiments have shown that protein - Ca+2 affinity can be modulated by electrostatic interactions occurring over long distances (Pantoliano, Whitlow et al. 1988).
Inclusion of the longer range electrostatic interactions in a molecular dynamics simulation by simply increasing the cutoff distance can dramatically raise the computational cost. Most often, the long-range electrostatic interactions are ignored, however, in some cases, their neglect introduces a severe approximation; for example in the calculations of dielectric properties (Alper and Levy 1989) or in metal ion - protein interactions. (Stote and Karplus 1995).

In recent years, a number of models have been introduced which permit the inclusion of long-range electrostatic interactions in molecular dynamics simulation. For simulations of proteins and enzymes in a crystalline state, the Ewald summation is considered to be the correct treatment for long range electrostatic interactions (Allen and Tildesley 1989). Variations of the Ewald method for periodic systems include the particle-mesh Ewald method (York, Darden et al. 1993).

To treat non-periodic systems, such as an enzyme in solution methods based on multipole expansions have been developed. Many of these methods partition the electrostatic interaction into a long-range component and a short range component. The short range component is treated in the usual pairwise fashion while a multipole approximation is introduced to approximate the long-range electrostatic interaction; several such models have been developed (Brooks, Bruccoleri et al. 1983; Stote, States et al. 1991; Shimada, Kaneko et al. 1994). Two such models have been implemented in the CHARMM program, the Extended Electrostatics model (Stote, States et al. 1991) and the Fast Multipole Method Method (Greengard and Rokhlin 1987; Shimada, Kaneko et al. 1994). Just to cite a couple of examples where these methods significantly improved the simulation, the Extended Electrostatics methods was used in a study of the binding interactions in the RNase A/3'-UMP enzyme-product complex (Straub, Lim et al. 1994). This study showed that inclusion of the long-range electrostatic contribution was necessary for the uridine phosphate to remain correctly positioned in the active site. In another study, simulations of the zinc enzymes carboxypeptidase A and carbonic anhydrase were done using the Extended Electrostatics model; the simulations showed that long range electrostatic interactions are important for maintaining the correct geometry of the zinc binding site (Stote and Karplus 1995), particularly in the case of carbonic anhydrase,.

Although these methods require more computer time than if one simply neglects the long-range part, they are significantly faster than if one does the N2 summation of all the interactions and the results can be significantly improved.
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The Extended Electrostatics Model
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The Extended Electrostatics model approximates the full electrostatic interaction by partitioning the electric potential and the resulting forces on the atom at Ri into a "Near" and an "Extended" contribution. The "Near" contribution arises from the charged particles which fall within the sphere defined by the cutoff distance Rcut, while the "Extended" contribution, arises from the particles which are beyond the cutoff distance Rcut. The "Near" contribution is calculated by a conventional pairwise sum and the "Extended" contribution to the potential at Ri is calculated using a multipole approximation (Stote, States et al. 1991).



Treatment of Solvent in a Molecular Dynamics Simulation

Solvent, usually water, has a fundamental influence on the structure, dynamics and thermodynamics of biological molecules, both locally and globally. One of the most important effects of the solvent is the screening of electrostatic interactions. The electrostatic interaction between two charges is given by Coulomb’s law,
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where qi, qj are the partial atomic charges, elec is the effective dielectric constant and rij is the relative distance between the two particles. It is important to include solvent effects in an MD simulation. This can be done at several levels. The simplest treatment is to simply include a dielectric screening constant in the electrostatic term of the potential energy function. In this implicit treatment of the solvent, water molecules are not included in the simulation but an effective dielectric constant is used. Often the effective dielectric constant is taken to be distance dependent, eff=rij), where  ranges from 4 to 20. Although this is a crude approximation, it is still much better than using unscreened partial charges. Other implicit solvent models have been developed that range from the relatively simple distance-dependent dielectric constants to models that base the screening on the solvent exposed surface area of the protein. The distance-dependent dielectric coefficient is the simplest way to include solvent screening without including explicit water molecules and it is available in most simulation programs. Recently, several implicit solvent models based on continuum electrostatic theory have been developed {ref}.
If water molecules are explicitly included in the simulation, then  = 1 in the energy function; the explicit water molecules provide the electrostatic shielding. In this more detailed treatment of the solvent boundary conditions must be imposed, first, to prevent the water molecules from diffusing away from the protein during the simulation, and second to allow simulation and calculation of macroscopic properties using a limited number of solvent molecules. Several different treatments of the boundary exist, the use of one over another depends strongly on the type of problem the simulation is to address.


Periodic Boundary conditions

[image: image48]
Periodic boundary conditions enable a simulation to be performed using a relatively small number of particles in such a way that the particles experience forces as though they were in a bulk solution. See, for example, the two dimensional box. The central box is surrounded by eight neighbors. The coordinates of the image particles, those found in the surrounding box are related to those in the primary box by simple translations. The simplest box is the cubic box. Forces on the primary particles are calculated from particles within the same box as well as in the image box. The cutoff is chosen such that a particle in the primary box does not see its image in the surrounding boxes.



Solvation shells

[image: image49]
There exist numerous cases where one may not wish to use periodic boundary conditions. In some cases, the use of periodic boundary conditions requires the use of a prohibitively large number of water molecules.

With the increase in computer power, it has become much more feasible to incorporate water molecules in the simulation. The simplest way is to surround the protein or just a part of the protein with a sphere of water. Boundary potentials have been developed which restrain the water molecules to a sphere while maintaining a strong semblence to bulk water. Structural and thermodynamics properties when calculated under these conditions indicate that the water still behaves as bulk water. This usually involves much fewer water molecules than in a periodic boundary simulation and is often sufficient.



Active site solvation

[image: image50]
Often in the case of proteins, in particular enzymes, there is a large protein scafold yet one is primarily interested in what is happening in the active site. In this case, the enzyme can be partitioned into several regions. The reaction zone corresponds to that part of the enzyme which is of interest, usually the active site. Everything outside the reaction zone is referred to as the reservoir region. Atoms in the reservoir region are usually held fixed or harmonically constrained. The reaction zone is then solvated with a sufficiently large sphere of water and only this region is allowed to move during a molecular dynamics simulation. This allows for a significant speed up of computer time if one is just interested in a localized region.



Setting up and running a Molecular Dynamics Simulations

In a molecular dynamics simulation, the time dependent behavior of the molecular system is obtained by integrating Newton’s equations of motion using one of the numerical integrators described earlier (see Classical Mechanics) and the potential energy function (see Potential Energy Function). The result of the simulation is a time series of conformations; this is called a trajectory or the path followed by each atom in accordance with Newton’s laws of motion. Most molecular dynamics simulations are performed under conditions of constant N,V,E (the microcanonical ensemble), but more recent methods perform simulations at constant N, T and P to better mimic experimental conditions. In this section we describe in some detail the steps taken to setup and run a molecular dynamics simulation.
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Initialization
To begin a molecular dynamics simulation, you must first choose an initial configuration of the system, a starting point, or t=0. Most often, in simulations of biomolecules, an x-ray crystal structure or an NMR structure is obtained from the Brookhaven Protein Databank (http://www.rcsb.org/pdb/) and used as the initial structure. It is also possible to use a theoretical structure developed by homology modeling. The choice of the initial configuration must be done carefully as this can influence the quality of the simulation. It is often good to choose a configuration close to the state that you wish to simulate.
Prior to starting a molecular dynamics simulation, it is advisable to do an energy minimization of the structure. This removes any strong van der Waals interactions that may exisit, which might otherwise lead to local structural distortion and result in an unstable simulation.

At this point, explicit water molecules are added to solvate the protein. If you are starting from an x-ray crystal structure, then it is likely that some water molecules are already present, but the amount is usually insufficient for solvation. The solvating water molecules are usually obtained from a suitable large box of water that has been previous equilibrated. The entire box of water is overlayed onto the protein and those water molecules that overlap the protein are removed. At this point, another energy minimization should be done with the protein fixed in its energy minimized position. This allows the water molecules to readjust to the protein molecule.

Heating the system

Initial velocities at a low temperature are assigned to each atom of the system and Newton’s equations of motion are integrated to propagate the system in time. If you are running an explicit solvent simulation, first fix the protein positions and let the waters move to adjust to the present of the protein. Once the waters are equilibrated, the constraints on the protein can be removed and the whole system (protein+water) can evolve in time. During the heating phase, initial velocities are assigned at a low temperature and the simulation is started. Periodically, new velocities are assigned at a slightly higher temperature and the simulation is allowed to continue. This is repeated until the desired temperature is reached.

Equilibration

Once the desired temperature is reached, the simulation of protein/water system continues and during this phase several properties are monitored; in particular, the structure, the pressure, the temperature and the energy. The point of the equilibration phase is to run the simulation until these properties become stable with respect to time. If the temperature increases or decreases significantly, the velocities can be scaled such that the temperature returns to near its desired value.

Production phase

The final step of the simulation is to run the simulation in "production" phase for the time length desired. This can be from several hundred ps to ns or more. It is during the production phase that thermodynamic parameters can be calculated so the simulation must conform to one of the ensembles described earlier.

  

	Note: The energy of an isolated system is conserved in nature, but not necesssarily so in a simulation. Energy conservation may be violated for several reasons: the time step chosen for integration may be too large, the cutoff method chosen may not be sufficiently good, numerical limitations of the computer. One good measure of simulation stability is the stability of the total energy time series.




Analysis of molecular dynamics simulations

When carrying out an MD simulation, coordinates and velocities of the system are saved; these are then used for the analysis. Time dependent properties can be displayed graphically, where one of the axis correpsonds to time and the other to the quantity of interest, such as energy, rmsd, etc. Other approaches have been developed for representing the time dependence of angle rotations (dihedrals). Average structures can be calculated and compared to experimental structures. Molecular dynamics simultions can help visualize and understand conformational changes at an atomic level when combined with molecular graphics programs which can display the structural parameters of interest in a time dependent way.

Some quantities that are routinely calculated from a molecular dynamics simulation include:

 

I)Mean Energy
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II)RMS difference between two structures
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III)RMS fluctuations
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note the relation between the RMS fluctuations and the crystallographic B factors;
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IV)radius of gyration
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where ri - rcm is the distance between atom i and the center of mass of the molecule.
 

From a molecular dynamics simulation, time dependent properties such as correlation functions can also be calculated. These, in turn, can be related to spectroscopic measurement. We will not cover this aspect here.
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